Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 1;99(9):2239–2245. doi: 10.1172/JCI119398

Growth hormone and bile acid synthesis. Key role for the activity of hepatic microsomal cholesterol 7alpha-hydroxylase in the rat.

M Rudling 1, P Parini 1, B Angelin 1
PMCID: PMC508055  PMID: 9151797

Abstract

Growth hormone (GH) has an important role in the regulation of hepatic LDL receptor expression and plasma lipoprotein levels. This investigation was undertaken to characterize the effects of GH on hepatic cholesterol and bile acid metabolism in the rat. In hypophysectomized (Hx) rats, the activities of the rate-limiting enzymes in cholesterol and bile acid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and cholesterol 7alpha-hydroxylase (C7alphaOH), were reduced by 71 and 64%, respectively. HMG CoA reductase mRNA levels were reduced by 37%, whereas C7alphaOH mRNA was increased by 81%. LDL receptor expression was reduced by 18% in Hx rats, without any change in the LDL receptor mRNA levels. Although the normal diurnal variation of C7alphaOH activity was preserved in Hx rats, the activity of C7alphaOH was much reduced both at midday and midnight. Total hepatic cholesterol was increased by 14% in Hx animals whereas microsomal cholesterol was unchanged. The rate of cholesterol esterification was enhanced (by 38%) in liver microsomes from Hx rats. Stepwise hormonal substitution of Hx rats showed that GH, but not thyroid hormone or cortisone, was essential to normalize the enzymatic activity of C7alphaOH. GH also normalized the altered plasma lipoprotein pattern in Hx rats, and increased the fecal output of bile acids. The latter effect was particularly evident when GH was combined with cortisone and thyroid hormone. Also in normal rats, GH stimulated C7alphaOH activity. In conclusion, GH has an essential role to maintain a normal enzymatic activity of C7alphaOH, and this, at least in part, explains the effects of GH on hepatic cholesterol metabolism. GH is also of critical importance to normalize the altered plasma lipoprotein pattern in Hx rats.

Full Text

The Full Text of this article is available as a PDF (225.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelin B. 1994 Mack-Forster Award Lecture. Review. Studies on the regulation of hepatic cholesterol metabolism in humans. Eur J Clin Invest. 1995 Apr;25(4):215–224. doi: 10.1111/j.1365-2362.1995.tb01552.x. [DOI] [PubMed] [Google Scholar]
  2. Angelin B., Einarsson K., Liljeqvist L., Nilsell K., Heller R. A. 3-hydroxy-3-methylglutaryl coenzyme A reductase in human liver microsomes: active and inactive forms and cross-reactivity with antibody against rat liver enzyme. J Lipid Res. 1984 Nov;25(11):1159–1166. [PubMed] [Google Scholar]
  3. Angelin B., Rudling M. Growth hormone and hepatic lipoprotein metabolism. Curr Opin Lipidol. 1994 Jun;5(3):160–165. doi: 10.1097/00041433-199405030-00002. [DOI] [PubMed] [Google Scholar]
  4. BEHER W. T., BAKER G. D., BEHER M. E., VULPETTI A., SEMENUK G. EFFECTS OF HYPOPHYSECTOMY, THYROIDECTOMY AND THYROID HORMONES ON STEROID METABOLISM IN THE RAT. Proc Soc Exp Biol Med. 1964 Dec;117:738–743. doi: 10.3181/00379727-117-28683. [DOI] [PubMed] [Google Scholar]
  5. Beher W. T., Beher M. E., Semenuk G. The effect of pituitary and thyroid hormones on bile acid metabolism in the rat. Metabolism. 1966 Feb;15(2):181–188. doi: 10.1016/0026-0495(66)90040-0. [DOI] [PubMed] [Google Scholar]
  6. Beher W. T., Stradnieks S., Lin G. J., Sanfield J. Rapid analysis of human fecal bile acids. Steroids. 1981 Sep;38(3):281–295. doi: 10.1016/0039-128x(81)90064-7. [DOI] [PubMed] [Google Scholar]
  7. Björkhem I., Lund E., Rudling M. Coordinate regulation of cholesterol 7 alpha-hydroxylase and HMG-CoA reductase in the liver. Subcell Biochem. 1997;28:23–55. doi: 10.1007/978-1-4615-5901-6_2. [DOI] [PubMed] [Google Scholar]
  8. Brindley D. N., Salter A. M. Hormonal regulation of the hepatic low density lipoprotein receptor and the catabolism of low density lipoproteins: relationship with the secretion of very low density lipoproteins. Prog Lipid Res. 1991;30(4):349–360. doi: 10.1016/0163-7827(91)90003-n. [DOI] [PubMed] [Google Scholar]
  9. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
  10. Corpas E., Harman S. M., Blackman M. R. Human growth hormone and human aging. Endocr Rev. 1993 Feb;14(1):20–39. doi: 10.1210/edrv-14-1-20. [DOI] [PubMed] [Google Scholar]
  11. Crestani M., Stroup D., Chiang J. Y. Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7). J Lipid Res. 1995 Nov;36(11):2419–2432. [PubMed] [Google Scholar]
  12. Dietschy J. M., Turley S. D., Spady D. K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993 Oct;34(10):1637–1659. [PubMed] [Google Scholar]
  13. Einarsson K., Angelin B., Ewerth S., Nilsell K., Björkhem I. Bile acid synthesis in man: assay of hepatic microsomal cholesterol 7 alpha-hydroxylase activity by isotope dilution-mass spectrometry. J Lipid Res. 1986 Jan;27(1):82–88. [PubMed] [Google Scholar]
  14. Einarsson K., Benthin L., Ewerth S., Hellers G., Ståhlberg D., Angelin B. Studies on acyl-coenzyme A: cholesterol acyltransferase activity in human liver microsomes. J Lipid Res. 1989 May;30(5):739–746. [PubMed] [Google Scholar]
  15. Einarsson K., Nilsell K., Leijd B., Angelin B. Influence of age on secretion of cholesterol and synthesis of bile acids by the liver. N Engl J Med. 1985 Aug 1;313(5):277–282. doi: 10.1056/NEJM198508013130501. [DOI] [PubMed] [Google Scholar]
  16. Elam M. B., Wilcox H. G., Solomon S. S., Heimberg M. In vivo growth hormone treatment stimulates secretion of very low density lipoprotein by the isolated perfused rat liver. Endocrinology. 1992 Dec;131(6):2717–2722. doi: 10.1210/endo.131.6.1446613. [DOI] [PubMed] [Google Scholar]
  17. Gielen J., Van Cantfort J., Robaye B., Renson J. Rat-liver cholesterol 7alpha-hydroxylase. 3. New results about its circadian rhythm. Eur J Biochem. 1975 Jun 16;55(1):41–48. doi: 10.1111/j.1432-1033.1975.tb02136.x. [DOI] [PubMed] [Google Scholar]
  18. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  19. Ha Y. C., Barter P. J. Rapid separation of plasma lipoproteins by gel permeation chromatography on agarose gel Superose 6B. J Chromatogr. 1985 May 31;341(1):154–159. doi: 10.1016/s0378-4347(00)84020-7. [DOI] [PubMed] [Google Scholar]
  20. Haramati A., Lumpkin M. D., Mulroney S. E. Early increase in pulsatile growth hormone release after unilateral nephrectomy in adult rats. Am J Physiol. 1994 Apr;266(4 Pt 2):F628–F632. doi: 10.1152/ajprenal.1994.266.4.F628. [DOI] [PubMed] [Google Scholar]
  21. Heubi J. E., Burstein S., Sperling M. A., Gregg D., Subbiah M. T., Matthews D. E. The role of human growth hormone in the regulation of cholesterol and bile acid metabolism. J Clin Endocrinol Metab. 1983 Nov;57(5):885–891. doi: 10.1210/jcem-57-5-885. [DOI] [PubMed] [Google Scholar]
  22. Hylemon P. B., Gurley E. C., Stravitz R. T., Litz J. S., Pandak W. M., Chiang J. Y., Vlahcevic Z. R. Hormonal regulation of cholesterol 7 alpha-hydroxylase mRNA levels and transcriptional activity in primary rat hepatocyte cultures. J Biol Chem. 1992 Aug 25;267(24):16866–16871. [PubMed] [Google Scholar]
  23. Kovanen P. T., Brown M. S., Goldstein J. L. Increased binding of low density lipoprotein to liver membranes from rats treated with 17 alpha-ethinyl estradiol. J Biol Chem. 1979 Nov 25;254(22):11367–11373. [PubMed] [Google Scholar]
  24. Lavery D. J., Schibler U. Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP. Genes Dev. 1993 Oct;7(10):1871–1884. doi: 10.1101/gad.7.10.1871. [DOI] [PubMed] [Google Scholar]
  25. Lee Y. H., Alberta J. A., Gonzalez F. J., Waxman D. J. Multiple, functional DBP sites on the promoter of the cholesterol 7 alpha-hydroxylase P450 gene, CYP7. Proposed role in diurnal regulation of liver gene expression. J Biol Chem. 1994 May 20;269(20):14681–14689. [PubMed] [Google Scholar]
  26. Mayer D. The circadian rhythm of synthesis and catabolism of cholesterol. Arch Toxicol. 1976 Dec 17;36(3-4):267–276. doi: 10.1007/BF00340534. [DOI] [PubMed] [Google Scholar]
  27. Myant N. B., Mitropoulos K. A. Cholesterol 7 alpha-hydroxylase. J Lipid Res. 1977 Mar;18(2):135–153. [PubMed] [Google Scholar]
  28. Ness G. C., Pendleton L. C., Li Y. C., Chiang J. Y. Effect of thyroid hormone on hepatic cholesterol 7 alpha hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1150–1156. doi: 10.1016/0006-291x(90)91568-d. [DOI] [PubMed] [Google Scholar]
  29. Noshiro M., Nishimoto M., Okuda K. Rat liver cholesterol 7 alpha-hydroxylase. Pretranslational regulation for circadian rhythm. J Biol Chem. 1990 Jun 15;265(17):10036–10041. [PubMed] [Google Scholar]
  30. Olivecrona H., Ericsson S., Angelin B. Growth hormone treatment does not alter biliary lipid metabolism in healthy adult men. J Clin Endocrinol Metab. 1995 Apr;80(4):1113–1117. doi: 10.1210/jcem.80.4.7714078. [DOI] [PubMed] [Google Scholar]
  31. Olivecrona H., Ericsson S., Berglund L., Angelin B. Increased concentrations of serum lipoprotein (a) in response to growth hormone treatment. BMJ. 1993 Jun 26;306(6894):1726–1727. doi: 10.1136/bmj.306.6894.1726-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pandak W. M., Vlahcevic Z. R., Heuman D. M., Krieg R. J., Hanna J. D., Chan J. C. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in rats with subtotal nephrectomy. Kidney Int. 1994 Aug;46(2):358–364. doi: 10.1038/ki.1994.282. [DOI] [PubMed] [Google Scholar]
  33. Paumgartner G., Sauerbruch T. Gallstones: pathogenesis. Lancet. 1991 Nov 2;338(8775):1117–1121. doi: 10.1016/0140-6736(91)91972-w. [DOI] [PubMed] [Google Scholar]
  34. Rudling M., Angelin B. Loss of resistance to dietary cholesterol in the rat after hypophysectomy: importance of the presence of growth hormone for hepatic low density lipoprotein-receptor expression. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8851–8855. doi: 10.1073/pnas.90.19.8851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rudling M., Angelin B. Stimulation of rat hepatic low density lipoprotein receptors by glucagon. Evidence of a novel regulatory mechanism in vivo. J Clin Invest. 1993 Jun;91(6):2796–2805. doi: 10.1172/JCI116522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rudling M. Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo. J Lipid Res. 1992 Apr;33(4):493–501. [PubMed] [Google Scholar]
  37. Rudling M., Norstedt G., Olivecrona H., Reihnér E., Gustafsson J. A., Angelin B. Importance of growth hormone for the induction of hepatic low density lipoprotein receptors. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6983–6987. doi: 10.1073/pnas.89.15.6983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rudling M., Olivecrona H., Eggertsen G., Angelin B. Regulation of rat hepatic low density lipoprotein receptors. In vivo stimulation by growth hormone is not mediated by insulin-like growth factor I. J Clin Invest. 1996 Jan 15;97(2):292–299. doi: 10.1172/JCI118415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Russell D. W., Setchell K. D. Bile acid biosynthesis. Biochemistry. 1992 May 26;31(20):4737–4749. doi: 10.1021/bi00135a001. [DOI] [PubMed] [Google Scholar]
  40. Salter A. M., Fisher S. C., Brindley D. N. Interactions of triiodothyronine, insulin and dexamethasone on the binding of human LDL to rat hepatocytes in monolayer culture. Atherosclerosis. 1988 May;71(1):77–80. doi: 10.1016/0021-9150(88)90304-8. [DOI] [PubMed] [Google Scholar]
  41. Salter A. M., Hayashi R., al-Seeni M., Brown N. F., Bruce J., Sorensen O., Atkinson E. A., Middleton B., Bleackley R. C., Brindley D. N. Effects of hypothyroidism and high-fat feeding on mRNA concentrations for the low-density-lipoprotein receptor and on acyl-CoA:cholesterol acyltransferase activities in rat liver. Biochem J. 1991 Jun 15;276(Pt 3):825–832. doi: 10.1042/bj2760825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schwarz M., Lund E. G., Setchell K. D., Kayden H. J., Zerwekh J. E., Björkhem I., Herz J., Russell D. W. Disruption of cholesterol 7alpha-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha-hydroxylase. J Biol Chem. 1996 Jul 26;271(30):18024–18031. doi: 10.1074/jbc.271.30.18024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sharkey M. F., Miyanohara A., Elam R. L., Friedmann T., Witztum J. L. Post-transcriptional regulation of retroviral vector-transduced low density lipoprotein receptor activity. J Lipid Res. 1990 Dec;31(12):2167–2178. [PubMed] [Google Scholar]
  44. Shimano H., Horton J. D., Hammer R. E., Shimomura I., Brown M. S., Goldstein J. L. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest. 1996 Oct 1;98(7):1575–1584. doi: 10.1172/JCI118951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sjöberg A., Oscarsson J., Boström K., Innerarity T. L., Edén S., Olofsson S. O. Effects of growth hormone on apolipoprotein-B (apoB) messenger ribonucleic acid editing, and apoB 48 and apoB 100 synthesis and secretion in the rat liver. Endocrinology. 1992 Jun;130(6):3356–3364. doi: 10.1210/endo.130.6.1597147. [DOI] [PubMed] [Google Scholar]
  46. Sundseth S. S., Waxman D. J. Hepatic P-450 cholesterol 7 alpha-hydroxylase. Regulation in vivo at the protein and mRNA level in response to mevalonate, diurnal rhythm, and bile acid feedback. J Biol Chem. 1990 Sep 5;265(25):15090–15095. [PubMed] [Google Scholar]
  47. Synouri-Vrettakou S., Mitropoulos K. A. Acyl-coenzyme A: cholesterol acyltransferase. Transfer of cholesterol to its substrate pool and modulation of activity. Eur J Biochem. 1983 Jun 15;133(2):299–307. doi: 10.1111/j.1432-1033.1983.tb07462.x. [DOI] [PubMed] [Google Scholar]
  48. Vlahcevic Z. R., Heuman D. M., Hylemon P. B. Regulation of bile acid synthesis. Hepatology. 1991 Mar;13(3):590–600. [PubMed] [Google Scholar]
  49. Wang D. P., Stroup D., Marrapodi M., Crestani M., Galli G., Chiang J. Y. Transcriptional regulation of the human cholesterol 7 alpha-hydroxylase gene (CYP7A) in HepG2 cells. J Lipid Res. 1996 Sep;37(9):1831–1841. [PubMed] [Google Scholar]
  50. Wang X., Sato R., Brown M. S., Hua X., Goldstein J. L. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8;77(1):53–62. doi: 10.1016/0092-8674(94)90234-8. [DOI] [PubMed] [Google Scholar]
  51. Wölle S., Via D. P., Chan L., Cornicelli J. A., Bisgaier C. L. Hepatic overexpression of bovine scavenger receptor type I in transgenic mice prevents diet-induced hyperbetalipoproteinemia. J Clin Invest. 1995 Jul;96(1):260–272. doi: 10.1172/JCI118030. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES