Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 1;99(9):2274–2283. doi: 10.1172/JCI119403

The midcycle increase in ovarian glucose uptake is associated with enhanced expression of glucose transporter 3. Possible role for interleukin-1, a putative intermediary in the ovulatory process.

S Kol 1, I Ben-Shlomo 1, K Ruutiainen 1, M Ando 1, T M Davies-Hill 1, R M Rohan 1, I A Simpson 1, E Y Adashi 1
PMCID: PMC508060  PMID: 9151802

Abstract

This study characterizes the rat ovary as a site of hormonally dependent glucose transporter (Glut) expression, and explores the potential role of interleukin (IL)-1, a putative intermediary in the ovulatory process, in this regard. Molecular probing throughout a simulated estrous cycle revealed a significant surge in ovarian Glut3 (but not Glut1) expression at the time of ovulation. Treatment of cultured whole ovarian dispersates from immature rats with IL-1beta resulted in upregulation of the relative abundance of the Glut1 (4.5-fold) and Glut3 (3.5-fold) proteins as determined by Western blot analysis. Other members of the Glut family (i.e., Gluts 2, 4, and 5) remained undetectable. The ability of IL-1 to upregulate Glut1 and Glut3 transcripts proved time-, dose-, nitric oxide-, and protein biosynthesis-dependent but glucose independent. Other ovarian agonists (i.e., TNF alpha, IGF-I, interferon-gamma, and insulin) were without effect. Taken together, our findings establish the mammalian ovary as a site of cyclically determined Glut1 and Glut3 expression, and disclose the ability of IL-1 to induce the ovarian expression as well as translation of Glut1 and Glut3 (but not of Gluts 2, 4, or 5). Our observations also establish IL-1 as the first known regulator of Glut3, the most efficient Glut known to date. In so doing, IL-1, a putative component of the ovulatory process, may be acting to meet the increased metabolic demands imposed on the growing follicle and the ovulated cumulus-enclosed oocyte.

Full Text

The Full Text of this article is available as a PDF (690.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG D. T., GREEP R. O. Effect of gonadotrophic hormones on glucose metabolism by luteinized rat ovaries. Endocrinology. 1962 May;70:701–710. doi: 10.1210/endo-70-5-701. [DOI] [PubMed] [Google Scholar]
  2. Aghayan M., Rao L. V., Smith R. M., Jarett L., Charron M. J., Thorens B., Heyner S. Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development. Development. 1992 May;115(1):305–312. doi: 10.1242/dev.115.1.305. [DOI] [PubMed] [Google Scholar]
  3. Ben-Shlomo I., Adashi E. Y., Payne D. W. The morphogenic/cytotoxic and prostaglandin-stimulating activities of interleukin-1 beta in the rat ovary are nitric oxide independent. J Clin Invest. 1994 Oct;94(4):1463–1469. doi: 10.1172/JCI117484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Shlomo I., Kokia E., Jackson M. J., Adashi E. Y., Payne D. W. Interleukin-1 beta stimulates nitrite production in the rat ovary: evidence for heterologous cell-cell interaction and for insulin-mediated regulation of the inducible isoform of nitric oxide synthase. Biol Reprod. 1994 Aug;51(2):310–318. doi: 10.1095/biolreprod51.2.310. [DOI] [PubMed] [Google Scholar]
  5. Birnbaum M. J., Haspel H. C., Rosen O. M. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5784–5788. doi: 10.1073/pnas.83.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brännström M., Norman R. J., Seamark R. F., Robertson S. A. Rat ovary produces cytokines during ovulation. Biol Reprod. 1994 Jan;50(1):88–94. doi: 10.1095/biolreprod50.1.88. [DOI] [PubMed] [Google Scholar]
  7. Brännström M., Wang L., Norman R. J. Effects of cytokines on prostaglandin production and steroidogenesis of incubated preovulatory follicles of the rat. Biol Reprod. 1993 Jan;48(1):165–171. doi: 10.1095/biolreprod48.1.165. [DOI] [PubMed] [Google Scholar]
  8. Brännström M., Wang L., Norman R. J. Ovulatory effect of interleukin-1 beta on the perfused rat ovary. Endocrinology. 1993 Jan;132(1):399–404. doi: 10.1210/endo.132.1.8419137. [DOI] [PubMed] [Google Scholar]
  9. Burant C. F., Davidson N. O. GLUT3 glucose transporter isoform in rat testis: localization, effect of diabetes mellitus, and comparison to human testis. Am J Physiol. 1994 Dec;267(6 Pt 2):R1488–R1495. doi: 10.1152/ajpregu.1994.267.6.R1488. [DOI] [PubMed] [Google Scholar]
  10. Deyerle K. L., Sims J. E., Dower S. K., Bothwell M. A. Pattern of IL-1 receptor gene expression suggests role in noninflammatory processes. J Immunol. 1992 Sep 1;149(5):1657–1665. [PubMed] [Google Scholar]
  11. Dinarello C. A., Wolff S. M. The role of interleukin-1 in disease. N Engl J Med. 1993 Jan 14;328(2):106–113. doi: 10.1056/NEJM199301143280207. [DOI] [PubMed] [Google Scholar]
  12. Ellman C., Corbett J. A., Misko T. P., McDaniel M., Beckerman K. P. Nitric oxide mediates interleukin-1-induced cellular cytotoxicity in the rat ovary. A potential role for nitric oxide in the ovulatory process. J Clin Invest. 1993 Dec;92(6):3053–3056. doi: 10.1172/JCI116930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haber R. S., Weinstein S. P., O'Boyle E., Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology. 1993 Jun;132(6):2538–2543. doi: 10.1210/endo.132.6.8504756. [DOI] [PubMed] [Google Scholar]
  14. Haspel H. C., Wilk E. W., Birnbaum M. J., Cushman S. W., Rosen O. M. Glucose deprivation and hexose transporter polypeptides of murine fibroblasts. J Biol Chem. 1986 May 25;261(15):6778–6789. [PubMed] [Google Scholar]
  15. Hernandez E. R., Jimenez J. L., Payne D. W., Adashi E. Y. Adrenergic regulation of ovarian androgen biosynthesis is mediated via beta 2-adrenergic theca-interstitial cell recognition sites. Endocrinology. 1988 Apr;122(4):1592–1602. doi: 10.1210/endo-122-4-1592. [DOI] [PubMed] [Google Scholar]
  16. Hurwitz A., Dushnik M., Solomon H., Ben-Chetrit A., Finci-Yeheskel Z., Milwidsky A., Mayer M., Adashi E. Y., Yagel S. Cytokine-mediated regulation of rat ovarian function: interleukin-1 stimulates the accumulation of a 92-kilodalton gelatinase. Endocrinology. 1993 Jun;132(6):2709–2714. doi: 10.1210/endo.132.6.8389288. [DOI] [PubMed] [Google Scholar]
  17. Hurwitz A., Loukides J., Ricciarelli E., Botero L., Katz E., McAllister J. M., Garcia J. E., Rohan R., Adashi E. Y., Hernandez E. R. Human intraovarian interleukin-1 (IL-1) system: highly compartmentalized and hormonally dependent regulation of the genes encoding IL-1, its receptor, and its receptor antagonist. J Clin Invest. 1992 Jun;89(6):1746–1754. doi: 10.1172/JCI115777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hurwitz A., Ricciarelli E., Botero L., Rohan R. M., Hernandez E. R., Adashi E. Y. Endocrine- and autocrine-mediated regulation of rat ovarian (theca-interstitial) interleukin-1 beta gene expression: gonadotropin-dependent preovulatory acquisition. Endocrinology. 1991 Dec;129(6):3427–3429. doi: 10.1210/endo-129-6-3427. [DOI] [PubMed] [Google Scholar]
  19. Kokia E., Ben-Shlomo I., Adashi E. Y. The ovarian action of interleukin-1 is receptor mediated: reversal by a naturally occurring interleukin-1 receptor antagonist. Fertil Steril. 1995 Jan;63(1):176–181. doi: 10.1016/s0015-0282(16)57314-2. [DOI] [PubMed] [Google Scholar]
  20. Kokia E., Hurwitz A., Ben-Shlomo I., Adashi E. Y., Yanagishita M. Receptor-mediated stimulatory effect of IL-1 beta on hyaluronic acid and proteoglycan biosynthesis by cultured rat ovarian cells: role for heterologous cell-cell interactions. Endocrinology. 1993 Nov;133(5):2391–2394. doi: 10.1210/endo.133.5.8404691. [DOI] [PubMed] [Google Scholar]
  21. Kokia E., Hurwitz A., Ricciarelli E., Tedeschi C., Resnick C. E., Mitchell M. D., Adashi E. Y. Interleukin-1 stimulates ovarian prostaglandin biosynthesis: evidence for heterologous contact-independent cell-cell interaction. Endocrinology. 1992 May;130(5):3095–3097. doi: 10.1210/endo.130.5.1572315. [DOI] [PubMed] [Google Scholar]
  22. Kol S., Ben-Shlomo I., Adashi E. Y., Rohan R. M. Simplified riboprobe purification using translucent straws as gel tubes. Genet Anal. 1996 Jan;12(3-4):129–132. doi: 10.1016/1050-3862(95)00119-0. [DOI] [PubMed] [Google Scholar]
  23. Lowe W. L., Jr, Roberts C. T., Jr, Lasky S. R., LeRoith D. Differential expression of alternative 5' untranslated regions in mRNAs encoding rat insulin-like growth factor I. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8946–8950. doi: 10.1073/pnas.84.24.8946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maher F., Davies-Hill T. M., Simpson I. A. Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J. 1996 May 1;315(Pt 3):827–831. doi: 10.1042/bj3150827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maher F., Vannucci S. J., Simpson I. A. Glucose transporter proteins in brain. FASEB J. 1994 Oct;8(13):1003–1011. doi: 10.1096/fasebj.8.13.7926364. [DOI] [PubMed] [Google Scholar]
  26. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
  27. Nagamatsu S., Kornhauser J. M., Burant C. F., Seino S., Mayo K. E., Bell G. I. Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. J Biol Chem. 1992 Jan 5;267(1):467–472. [PubMed] [Google Scholar]
  28. Nagamatsu S., Sawa H., Kamada K., Nakamichi Y., Yoshimoto K., Hoshino T. Neuron-specific glucose transporter (NSGT): CNS distribution of GLUT3 rat glucose transporter (RGT3) in rat central neurons. FEBS Lett. 1993 Nov 22;334(3):289–295. doi: 10.1016/0014-5793(93)80697-s. [DOI] [PubMed] [Google Scholar]
  29. Peterson C. M., Hales H. A., Hatasaka H. H., Mitchell M. D., Rittenhouse L., Jones K. P. Interleukin-1 beta (IL-1 beta) modulates prostaglandin production and the natural IL-1 receptor antagonist inhibits ovulation in the optimally stimulated rat ovarian perfusion model. Endocrinology. 1993 Nov;133(5):2301–2306. doi: 10.1210/endo.133.5.7691586. [DOI] [PubMed] [Google Scholar]
  30. Pitzel L., Jarry H., Wuttke W. Effects and interactions of prostaglandin F2 alpha, oxytocin, and cytokines on steroidogenesis of porcine luteal cells. Endocrinology. 1993 Feb;132(2):751–756. doi: 10.1210/endo.132.2.8425493. [DOI] [PubMed] [Google Scholar]
  31. Polan M. L., Loukides J. A., Honig J. Interleukin-1 in human ovarian cells and in peripheral blood monocytes increases during the luteal phase: evidence for a midcycle surge in the human. Am J Obstet Gynecol. 1994 Apr;170(4):1000–1007. doi: 10.1016/s0002-9378(94)70093-1. [DOI] [PubMed] [Google Scholar]
  32. RAABO E., TERKILDSEN T. C. On the enzymatic determination of blood glucose. Scand J Clin Lab Invest. 1960;12(4):402–407. doi: 10.3109/00365516009065404. [DOI] [PubMed] [Google Scholar]
  33. Scherzer W. J., Ruutiainen-Altman K. S., Putowski L. T., Kol S., Adashi E. Y., Rohan R. M. Detection and in vivo hormonal regulation of rat ovarian type I and type II interleukin-I receptor mRNAs: increased expression during the periovulatory period. J Soc Gynecol Investig. 1996 May-Jun;3(3):131–139. [PubMed] [Google Scholar]
  34. Simón C., Frances A., Piquette G., Polan M. L. Immunohistochemical localization of the interleukin-1 system in the mouse ovary during follicular growth, ovulation, and luteinization. Biol Reprod. 1994 Feb;50(2):449–457. doi: 10.1095/biolreprod50.2.449. [DOI] [PubMed] [Google Scholar]
  35. Simón C., Tsafriri A., Chun S. Y., Piquette G. N., Dang W., Polan M. L. Interleukin-1 receptor antagonist suppresses human chorionic gonadotropin-induced ovulation in the rat. Biol Reprod. 1994 Oct;51(4):662–667. doi: 10.1095/biolreprod51.4.662. [DOI] [PubMed] [Google Scholar]
  36. Takehara Y., Dharmarajan A. M., Kaufman G., Wallach E. E. Effect of interleukin-1 beta on ovulation in the in vitro perfused rabbit ovary. Endocrinology. 1994 Apr;134(4):1788–1793. doi: 10.1210/endo.134.4.8137743. [DOI] [PubMed] [Google Scholar]
  37. Townson D. H., Pate J. L. Regulation of prostaglandin synthesis by interleukin-1 beta in cultured bovine luteal cells. Biol Reprod. 1994 Sep;51(3):480–485. doi: 10.1095/biolreprod51.3.480. [DOI] [PubMed] [Google Scholar]
  38. Yano H., Seino Y., Inagaki N., Hinokio Y., Yamamoto T., Yasuda K., Masuda K., Someya Y., Imura H. Tissue distribution and species difference of the brain type glucose transporter (GLUT3). Biochem Biophys Res Commun. 1991 Jan 31;174(2):470–477. doi: 10.1016/0006-291x(91)91440-n. [DOI] [PubMed] [Google Scholar]
  39. Zhou J., Bondy C. A. Placental glucose transporter gene expression and metabolism in the rat. J Clin Invest. 1993 Mar;91(3):845–852. doi: 10.1172/JCI116305. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES