Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 15;99(10):2405–2415. doi: 10.1172/JCI119423

Identification of naturally processed T cell epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients.

J Endl 1, H Otto 1, G Jung 1, B Dreisbusch 1, F Donie 1, P Stahl 1, R Elbracht 1, G Schmitz 1, E Meinl 1, M Hummel 1, A G Ziegler 1, R Wank 1, D J Schendel 1
PMCID: PMC508080  PMID: 9153283

Abstract

Glutamic acid decarboxylase (GAD) has been defined as a major target antigen in insulin-dependent diabetes mellitus (IDDM). To identify the molecular ligands triggering a T cell response to GAD, a panel of human GAD65-specific T lymphocyte lines was generated from peripheral blood of three recent onset IDDM patients. All lines derived from a patient expressing the high-risk-conferring HLA-DR*0301/ *0401 haplotypes recognized a single epitope localized between amino acid positions 270 and 283 of GAD65, a stretch that is located in close proximity to the homology region shared with Coxsackie virus P2-C protein. All lines with this specificity were restricted to the DRA, B1*0401 product of the DR4 haplotype. Analysis of the GAD-specific T cell response in a second patient homozygous for DR4 haplotypes demonstrated that the same DRA, B1*0401 allele selected T cells specific for a different determinant. The T cell response profile in a third patient showed that DR*1501/ *1601-encoding haplotypes could present at least three different epitopes to GAD65-specific T lymphocytes. One of these epitopes was presented by a DR allele associated with the resistance-conferring DRB1*1501 haplotype. GAD-specific T cell lines could not be isolated from HLA class II-matched normal individuals. Our data reveal that (a) the T cell response to GAD65 is quite heterogenous in recent onset IDDM patients; (b) HLA-DR, not DQ, seems to be the principal restriction element used by T cells present at the onset of the disease; and (c) T cells responding to epitopes containing identical sequences to Coxsackie virus P2-C protein were not detected.

Full Text

The Full Text of this article is available as a PDF (403.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. A., Bowman M. A., Campbell L., Darrow B. L., Kaufman D. L., Maclaren N. K. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest. 1994 Nov;94(5):2125–2129. doi: 10.1172/JCI117567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkinson M. A., Kaufman D. L., Campbell L., Gibbs K. A., Shah S. C., Bu D. F., Erlander M. G., Tobin A. J., Maclaren N. K. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet. 1992 Feb 22;339(8791):458–459. doi: 10.1016/0140-6736(92)91061-c. [DOI] [PubMed] [Google Scholar]
  3. Atkinson M. A., Maclaren N. K. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med. 1994 Nov 24;331(21):1428–1436. doi: 10.1056/NEJM199411243312107. [DOI] [PubMed] [Google Scholar]
  4. Baekkeskov S., Landin M., Kristensen J. K., Srikanta S., Bruining G. J., Mandrup-Poulsen T., de Beaufort C., Soeldner J. S., Eisenbarth G., Lindgren F. Antibodies to a 64,000 Mr human islet cell antigen precede the clinical onset of insulin-dependent diabetes. J Clin Invest. 1987 Mar;79(3):926–934. doi: 10.1172/JCI112903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bottazzo G. F., Florin-Christensen A., Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. 1974 Nov 30;2(7892):1279–1283. doi: 10.1016/s0140-6736(74)90140-8. [DOI] [PubMed] [Google Scholar]
  6. Bu D. F., Erlander M. G., Hitz B. C., Tillakaratne N. J., Kaufman D. L., Wagner-McPherson C. B., Evans G. A., Tobin A. J. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2115–2119. doi: 10.1073/pnas.89.6.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell I. L., Iscaro A., Harrison L. C. IFN-gamma and tumor necrosis factor-alpha. Cytotoxicity to murine islets of Langerhans. J Immunol. 1988 Oct 1;141(7):2325–2329. [PubMed] [Google Scholar]
  8. Castaño L., Eisenbarth G. S. Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol. 1990;8:647–679. doi: 10.1146/annurev.iy.08.040190.003243. [DOI] [PubMed] [Google Scholar]
  9. Durinovic-Bellò I., Hummel M., Ziegler A. G. Cellular immune response to diverse islet cell antigens in IDDM. Diabetes. 1996 Jun;45(6):795–800. doi: 10.2337/diab.45.6.795. [DOI] [PubMed] [Google Scholar]
  10. Gorsuch A. N., Spencer K. M., Lister J., McNally J. M., Dean B. M., Bottazzo G. F., Cudworth A. G. Evidence for a long prediabetic period in type I (insulin-dependent) diabetes mellitus. Lancet. 1981 Dec 19;2(8260-61):1363–1365. doi: 10.1016/s0140-6736(81)92795-1. [DOI] [PubMed] [Google Scholar]
  11. Hammer J., Bono E., Gallazzi F., Belunis C., Nagy Z., Sinigaglia F. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J Exp Med. 1994 Dec 1;180(6):2353–2358. doi: 10.1084/jem.180.6.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harrison L. C., Honeyman M. C., DeAizpurua H. J., Schmidli R. S., Colman P. G., Tait B. D., Cram D. S. Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. Lancet. 1993 May 29;341(8857):1365–1369. doi: 10.1016/0140-6736(93)90940-i. [DOI] [PubMed] [Google Scholar]
  13. Honeyman M. C., Cram D. S., Harrison L. C. Glutamic acid decarboxylase 67-reactive T cells: a marker of insulin-dependent diabetes. J Exp Med. 1993 Feb 1;177(2):535–540. doi: 10.1084/jem.177.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hou J., Said C., Franchi D., Dockstader P., Chatterjee N. K. Antibodies to glutamic acid decarboxylase and P2-C peptides in sera from coxsackie virus B4-infected mice and IDDM patients. Diabetes. 1994 Oct;43(10):1260–1266. doi: 10.2337/diab.43.10.1260. [DOI] [PubMed] [Google Scholar]
  15. Jenkins O., Booth J. D., Minor P. D., Almond J. W. The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. J Gen Virol. 1987 Jul;68(Pt 7):1835–1848. doi: 10.1099/0022-1317-68-7-1835. [DOI] [PubMed] [Google Scholar]
  16. Johnson J. P., Nordwig H., Wank R. Epitope analysis with monoclonal antibodies directed against class II molecules subdivides HLA-DR2, DR3 and DR4: correlations with cellularly defined Dw specificities. Tissue Antigens. 1987 Jan;29(1):26–33. doi: 10.1111/j.1399-0039.1987.tb01546.x. [DOI] [PubMed] [Google Scholar]
  17. Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993 Nov 4;366(6450):69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaufman D. L., Erlander M. G., Clare-Salzler M., Atkinson M. A., Maclaren N. K., Tobin A. J. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest. 1992 Jan;89(1):283–292. doi: 10.1172/JCI115573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lohmann T., Leslie R. D., Hawa M., Geysen M., Rodda S., Londei M. Immunodominant epitopes of glutamic acid decarboxylase 65 and 67 in insulin-dependent diabetes mellitus. Lancet. 1994 Jun 25;343(8913):1607–1608. doi: 10.1016/s0140-6736(94)93061-9. [DOI] [PubMed] [Google Scholar]
  20. Nepom G. T., Erlich H. MHC class-II molecules and autoimmunity. Annu Rev Immunol. 1991;9:493–525. doi: 10.1146/annurev.iy.09.040191.002425. [DOI] [PubMed] [Google Scholar]
  21. Nishimoto H., Kikutani H., Yamamura K., Kishimoto T. Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. 1987 Jul 30-Aug 5Nature. 328(6129):432–434. doi: 10.1038/328432a0. [DOI] [PubMed] [Google Scholar]
  22. Ogata K., Ohta K., Kubo H., Yamaguchi A., Watanabe H. [The glutamic acid decarboxylase (GAD) antibodies and their clinical significance]. Rinsho Byori. 1995 May;43(5):468–471. [PubMed] [Google Scholar]
  23. Panina-Bordignon P., Lang R., van Endert P. M., Benazzi E., Felix A. M., Pastore R. M., Spinas G. A., Sinigaglia F. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med. 1995 May 1;181(5):1923–1927. doi: 10.1084/jem.181.5.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pette M., Fujita K., Wilkinson D., Altmann D. M., Trowsdale J., Giegerich G., Hinkkanen A., Epplen J. T., Kappos L., Wekerle H. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7968–7972. doi: 10.1073/pnas.87.20.7968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rammensee H. G., Friede T., Stevanoviíc S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228. doi: 10.1007/BF00172063. [DOI] [PubMed] [Google Scholar]
  26. Roll U., Christie M. R., Füchtenbusch M., Payton M. A., Hawkes C. J., Ziegler A. G. Perinatal autoimmunity in offspring of diabetic parents. The German Multicenter BABY-DIAB study: detection of humoral immune responses to islet antigens in early childhood. Diabetes. 1996 Jul;45(7):967–973. doi: 10.2337/diab.45.7.967. [DOI] [PubMed] [Google Scholar]
  27. Sarvetnick N., Liggitt D., Pitts S. L., Hansen S. E., Stewart T. A. Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell. 1988 Mar 11;52(5):773–782. doi: 10.1016/0092-8674(88)90414-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sheehy M. J., Scharf S. J., Rowe J. R., Neme de Gimenez M. H., Meske L. M., Erlich H. A., Nepom B. S. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. J Clin Invest. 1989 Mar;83(3):830–835. doi: 10.1172/JCI113965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Somoza N., Vargas F., Roura-Mir C., Vives-Pi M., Fernández-Figueras M. T., Ariza A., Gomis R., Bragado R., Martí M., Jaraquemada D. Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. J Immunol. 1994 Aug 1;153(3):1360–1377. [PubMed] [Google Scholar]
  30. Thomson G., Robinson W. P., Kuhner M. K., Joe S., MacDonald M. J., Gottschall J. L., Barbosa J., Rich S. S., Bertrams J., Baur M. P. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet. 1988 Dec;43(6):799–816. [PMC free article] [PubMed] [Google Scholar]
  31. Todd J. A., Bell J. I., McDevitt H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987 Oct 15;329(6140):599–604. doi: 10.1038/329599a0. [DOI] [PubMed] [Google Scholar]
  32. Wicker L. S., Chen S. L., Nepom G. T., Elliott J. F., Freed D. C., Bansal A., Zheng S., Herman A., Lernmark A., Zaller D. M. Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401. J Clin Invest. 1996 Dec 1;98(11):2597–2603. doi: 10.1172/JCI119079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wu J. Y., Denner L., Lin C. T., Song G. X. L-Glutamate decarboxylase from brain. Methods Enzymol. 1985;113:3–10. doi: 10.1016/s0076-6879(85)13004-1. [DOI] [PubMed] [Google Scholar]
  34. Wucherpfennig K. W., Strominger J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995 Mar 10;80(5):695–705. doi: 10.1016/0092-8674(95)90348-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yoon J. W., London W. T., Curfman B. L., Brown R. L., Notkins A. L. Coxsackie virus B4 produces transient diabetes in nonhuman primates. Diabetes. 1986 Jun;35(6):712–716. doi: 10.2337/diab.35.6.712. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES