Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 15;99(10):2452–2461. doi: 10.1172/JCI119429

Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin.

J Wada 1, K Ota 1, A Kumar 1, E I Wallner 1, Y S Kanwar 1
PMCID: PMC508086  PMID: 9153289

Abstract

Galectin-9, a beta-galactoside binding lectin, has recently been isolated from murine embryonic kidney. In this study, its biological functions and expression in embryonic, newborn, and adult mice tissues were investigated. By Northern blot analyses, it was found widely distributed and its expression was developmentally regulated. In situ hybridization studies revealed an accentuated expression of galectin-9 in liver and thymus of embryonic mice. In postnatal mice, antigalectin-9 immunoreactivity was observed in various tissues, including thymic epithelial cells. The high expression of galectin-9 in the thymus led us to investigate its role in the clonal deletion of thymocytes. Fusion proteins were generated, which retained lactose-binding activity like the endogenous galectin-9. Galectin-9, at 2.5 microM concentration, induced apoptosis in approximately 30% of the thymocytes, as assessed by terminal deoxytransferase-mediated dUTP nick end labeling method. The apoptotic effect was dose dependent and lactose inhibitable. At higher concentrations, it induced homotypic aggregation of the thymocytes. Electron microscopy revealed approximately 60% of the thymocytes undergoing apoptosis in the presence of galectin-9. By immunofluorescence microscopy, some of the thymocytes undergoing apoptosis had plasmalemmal bound galectin-9. Galectin-9 failed to induce apoptosis in hepatocytes. Taken together, these findings indicate that galectin-9, a developmentally regulated lectin, plays a role in thymocyte-epithelial interactions relevant to the biology of the thymus.

Full Text

The Full Text of this article is available as a PDF (8.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barondes S. H., Castronovo V., Cooper D. N., Cummings R. D., Drickamer K., Feizi T., Gitt M. A., Hirabayashi J., Hughes C., Kasai K. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994 Feb 25;76(4):597–598. doi: 10.1016/0092-8674(94)90498-7. [DOI] [PubMed] [Google Scholar]
  2. Barondes S. H., Cooper D. N., Gitt M. A., Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994 Aug 19;269(33):20807–20810. [PubMed] [Google Scholar]
  3. Baum L. G., Pang M., Perillo N. L., Wu T., Delegeane A., Uittenbogaart C. H., Fukuda M., Seilhamer J. J. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med. 1995 Mar 1;181(3):877–887. doi: 10.1084/jem.181.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cherayil B. J., Weiner S. J., Pillai S. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med. 1989 Dec 1;170(6):1959–1972. doi: 10.1084/jem.170.6.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chinnaiyan A. M., Dixit V. M. The cell-death machine. Curr Biol. 1996 May 1;6(5):555–562. doi: 10.1016/s0960-9822(02)00541-9. [DOI] [PubMed] [Google Scholar]
  6. Clyman R. I., Tannenbaum J., Chen Y. Q., Cooper D., Yurchenco P. D., Kramer R. H., Waleh N. S. Ductus arteriosus smooth muscle cell migration on collagen: dependence on laminin and its receptors. J Cell Sci. 1994 Apr;107(Pt 4):1007–1018. doi: 10.1242/jcs.107.4.1007. [DOI] [PubMed] [Google Scholar]
  7. Cooper D. N., Barondes S. H. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol. 1990 May;110(5):1681–1691. doi: 10.1083/jcb.110.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper D. N., Massa S. M., Barondes S. H. Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Cell Biol. 1991 Dec;115(5):1437–1448. doi: 10.1083/jcb.115.5.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Couraud P. O., Casentini-Borocz D., Bringman T. S., Griffith J., McGrogan M., Nedwin G. E. Molecular cloning, characterization, and expression of a human 14-kDa lectin. J Biol Chem. 1989 Jan 15;264(2):1310–1316. [PubMed] [Google Scholar]
  10. Dagher S. F., Wang J. L., Patterson R. J. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1213–1217. doi: 10.1073/pnas.92.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dyer K. D., Rosenberg H. F. Eosinophil Charcot-Leyden crystal protein binds to beta-galactoside sugars. Life Sci. 1996;58(23):2073–2082. doi: 10.1016/0024-3205(96)00201-9. [DOI] [PubMed] [Google Scholar]
  12. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971 Sep;8(9):871–874. doi: 10.1016/0019-2791(71)90454-x. [DOI] [PubMed] [Google Scholar]
  13. Frigeri L. G., Robertson M. W., Liu F. T. Expression of biologically active recombinant rat IgE-binding protein in Escherichia coli. J Biol Chem. 1990 Dec 5;265(34):20763–20769. [PubMed] [Google Scholar]
  14. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gitt M. A., Massa S. M., Leffler H., Barondes S. H. Isolation and expression of a gene encoding L-14-II, a new human soluble lactose-binding lectin. J Biol Chem. 1992 May 25;267(15):10601–10606. [PubMed] [Google Scholar]
  16. Gitt M. A., Wiser M. F., Leffler H., Herrmann J., Xia Y. R., Massa S. M., Cooper D. N., Lusis A. J., Barondes S. H. Sequence and mapping of galectin-5, a beta-galactoside-binding lectin, found in rat erythrocytes. J Biol Chem. 1995 Mar 10;270(10):5032–5038. doi: 10.1074/jbc.270.10.5032. [DOI] [PubMed] [Google Scholar]
  17. Gu M., Wang W., Song W. K., Cooper D. N., Kaufman S. J. Selective modulation of the interaction of alpha 7 beta 1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation. J Cell Sci. 1994 Jan;107(Pt 1):175–181. doi: 10.1242/jcs.107.1.175. [DOI] [PubMed] [Google Scholar]
  18. Hadari Y. R., Paz K., Dekel R., Mestrovic T., Accili D., Zick Y. Galectin-8. A new rat lectin, related to galectin-4. J Biol Chem. 1995 Feb 17;270(7):3447–3453. doi: 10.1074/jbc.270.7.3447. [DOI] [PubMed] [Google Scholar]
  19. Hanada M., Aimé-Sempé C., Sato T., Reed J. C. Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem. 1995 May 19;270(20):11962–11969. doi: 10.1074/jbc.270.20.11962. [DOI] [PubMed] [Google Scholar]
  20. Hirabayashi J., Kasai K. The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology. 1993 Aug;3(4):297–304. doi: 10.1093/glycob/3.4.297. [DOI] [PubMed] [Google Scholar]
  21. Hsu D. K., Hammes S. R., Kuwabara I., Greene W. C., Liu F. T. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol. 1996 May;148(5):1661–1670. [PMC free article] [PubMed] [Google Scholar]
  22. Hébert E., Monsigny M. Oncogenes and expression of endogenous lectins and glycoconjugates. Biol Cell. 1993;79(2):97–109. doi: 10.1111/j.1768-322x.1993.tb00899.x. [DOI] [PubMed] [Google Scholar]
  23. Inohara H., Raz A. Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion. Cancer Res. 1995 Aug 1;55(15):3267–3271. [PubMed] [Google Scholar]
  24. Leonidas D. D., Elbert B. L., Zhou Z., Leffler H., Ackerman S. J., Acharya K. R. Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Structure. 1995 Dec 15;3(12):1379–1393. doi: 10.1016/s0969-2126(01)00275-1. [DOI] [PubMed] [Google Scholar]
  25. Madsen P., Rasmussen H. H., Flint T., Gromov P., Kruse T. A., Honoré B., Vorum H., Celis J. E. Cloning, expression, and chromosome mapping of human galectin-7. J Biol Chem. 1995 Mar 17;270(11):5823–5829. doi: 10.1074/jbc.270.11.5823. [DOI] [PubMed] [Google Scholar]
  26. Magnaldo T., Bernerd F., Darmon M. Galectin-7, a human 14-kDa S-lectin, specifically expressed in keratinocytes and sensitive to retinoic acid. Dev Biol. 1995 Apr;168(2):259–271. doi: 10.1006/dbio.1995.1078. [DOI] [PubMed] [Google Scholar]
  27. Mehul B., Bawumia S., Hughes R. C. Cross-linking of galectin 3, a galactose-binding protein of mammalian cells, by tissue-type transglutaminase. FEBS Lett. 1995 Feb 27;360(2):160–164. doi: 10.1016/0014-5793(95)00100-n. [DOI] [PubMed] [Google Scholar]
  28. Ochieng J., Fridman R., Nangia-Makker P., Kleiner D. E., Liotta L. A., Stetler-Stevenson W. G., Raz A. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry. 1994 Nov 29;33(47):14109–14114. doi: 10.1021/bi00251a020. [DOI] [PubMed] [Google Scholar]
  29. Oda Y., Herrmann J., Gitt M. A., Turck C. W., Burlingame A. L., Barondes S. H., Leffler H. Soluble lactose-binding lectin from rat intestine with two different carbohydrate-binding domains in the same peptide chain. J Biol Chem. 1993 Mar 15;268(8):5929–5939. [PubMed] [Google Scholar]
  30. Ong C. J., Chui D., Teh H. S., Marth J. D. Thymic CD45 tyrosine phosphatase regulates apoptosis and MHC-restricted negative selection. J Immunol. 1994 Apr 15;152(8):3793–3805. [PubMed] [Google Scholar]
  31. Patel D. D., Haynes B. F. Cell adhesion molecules involved in intrathymic T cell development. Semin Immunol. 1993 Aug;5(4):282–292. doi: 10.1006/smim.1993.1032. [DOI] [PubMed] [Google Scholar]
  32. Perillo N. L., Pace K. E., Seilhamer J. J., Baum L. G. Apoptosis of T cells mediated by galectin-1. Nature. 1995 Dec 14;378(6558):736–739. doi: 10.1038/378736a0. [DOI] [PubMed] [Google Scholar]
  33. Pfeifer K., Haasemann M., Gamulin V., Bretting H., Fahrenholz F., Müller W. E. S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology. 1993 Apr;3(2):179–184. doi: 10.1093/glycob/3.2.179. [DOI] [PubMed] [Google Scholar]
  34. Poirier F., Timmons P. M., Chan C. T., Guénet J. L., Rigby P. W. Expression of the L14 lectin during mouse embryogenesis suggests multiple roles during pre- and post-implantation development. Development. 1992 May;115(1):143–155. doi: 10.1242/dev.115.1.143. [DOI] [PubMed] [Google Scholar]
  35. Robertson M. W., Albrandt K., Keller D., Liu F. T. Human IgE-binding protein: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemistry. 1990 Sep 4;29(35):8093–8100. doi: 10.1021/bi00487a015. [DOI] [PubMed] [Google Scholar]
  36. Sato S., Hughes R. C. Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem. 1992 Apr 5;267(10):6983–6990. [PubMed] [Google Scholar]
  37. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  38. Sgonc R., Boeck G., Dietrich H., Gruber J., Recheis H., Wick G. Simultaneous determination of cell surface antigens and apoptosis. Trends Genet. 1994 Feb;10(2):41–42. doi: 10.1016/0168-9525(94)90140-6. [DOI] [PubMed] [Google Scholar]
  39. Shortman K., Vremec D., Egerton M. The kinetics of T cell antigen receptor expression by subgroups of CD4+8+ thymocytes: delineation of CD4+8+3(2+) thymocytes as post-selection intermediates leading to mature T cells. J Exp Med. 1991 Feb 1;173(2):323–332. doi: 10.1084/jem.173.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993 Apr;3(2):97–130. doi: 10.1093/glycob/3.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wada J., Kumar A., Liu Z., Ruoslahti E., Reichardt L., Marvaldi J., Kanwar Y. S. Cloning of mouse integrin alphaV cDNA and role of the alphaV-related matrix receptors in metanephric development. J Cell Biol. 1996 Mar;132(6):1161–1176. doi: 10.1083/jcb.132.6.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wells V., Mallucci L. Identification of an autocrine negative growth factor: mouse beta-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell. 1991 Jan 11;64(1):91–97. doi: 10.1016/0092-8674(91)90211-g. [DOI] [PubMed] [Google Scholar]
  44. Yamaoka A., Kuwabara I., Frigeri L. G., Liu F. T. A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol. 1995 Apr 1;154(7):3479–3487. [PubMed] [Google Scholar]
  45. Yang R. Y., Hsu D. K., Liu F. T. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6737–6742. doi: 10.1073/pnas.93.13.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yin X. M., Oltvai Z. N., Korsmeyer S. J. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994 May 26;369(6478):321–323. doi: 10.1038/369321a0. [DOI] [PubMed] [Google Scholar]
  47. van den Brûle F. A., Buicu C., Baldet M., Sobel M. E., Cooper D. N., Marschal P., Castronovo V. Galectin-1 modulates human melanoma cell adhesion to laminin. Biochem Biophys Res Commun. 1995 Apr 17;209(2):760–767. doi: 10.1006/bbrc.1995.1564. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES