Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 15;99(10):2470–2478. doi: 10.1172/JCI119431

Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis.

R Kalluri 1, C F Shield 1, P Todd 1, B G Hudson 1, E G Neilson 1
PMCID: PMC508088  PMID: 9153291

Abstract

Normal glomerular capillaries filter plasma through a basement membrane (GBM) rich in alpha3(IV), alpha4(IV), and alpha5(IV) chains of type IV collagen. We now show that these latter isoforms are absent biochemically from the glomeruli in patients with X-linked Alport syndrome (XAS). Their GBM instead retain a fetal distribution of alpha1(IV) and alpha2(IV) isoforms because they fail to developmentally switch their alpha-chain use. The anomalous persistence of these fetal isoforms of type IV collagen in the GBM in XAS also confers an unexpected increase in susceptibility to proteolytic attack by collagenases and cathepsins. The incorporation of cysteine-rich alpha3(IV), alpha4(IV), and alpha5(IV) chains into specialized basement membranes like the GBM may have normally evolved to protectively enhance their resistance to proteolytic degradation at the site of glomerular filtration. The relative absence of these potentially protective collagen IV isoforms in GBM from XAS may explain the progressive basement membrane splitting and increased damage as these kidneys deteriorate.

Full Text

The Full Text of this article is available as a PDF (386.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R. Structure and development of the glomerular capillary wall and basement membrane. Am J Physiol. 1987 Nov;253(5 Pt 2):F783–F794. doi: 10.1152/ajprenal.1987.253.5.F783. [DOI] [PubMed] [Google Scholar]
  2. Baricos W. H., Cortez S. L., Le Q. C., Zhou Y. W., Dicarlo R. M., O'Connor S. E., Shah S. V. Glomerular basement membrane degradation by endogenous cysteine proteinases in isolated rat glomeruli. Kidney Int. 1990 Sep;38(3):395–401. doi: 10.1038/ki.1990.218. [DOI] [PubMed] [Google Scholar]
  3. Baricos W. H., Zhou Y., Mason R. W., Barrett A. J. Human kidney cathepsins B and L. Characterization and potential role in degradation of glomerular basement membrane. Biochem J. 1988 May 15;252(1):301–304. doi: 10.1042/bj2520301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brodt P., Reich R., Moroz L. A., Chambers A. F. Differences in the repertoires of basement membrane degrading enzymes in two carcinoma sublines with distinct patterns of site-selective metastasis. Biochim Biophys Acta. 1992 Jun 9;1139(1-2):77–83. doi: 10.1016/0925-4439(92)90085-2. [DOI] [PubMed] [Google Scholar]
  5. Butkowski R. J., Wieslander J., Kleppel M., Michael A. F., Fish A. J. Basement membrane collagen in the kidney: regional localization of novel chains related to collagen IV. Kidney Int. 1989 May;35(5):1195–1202. doi: 10.1038/ki.1989.110. [DOI] [PubMed] [Google Scholar]
  6. Butkowski R. J., Wieslander J., Wisdom B. J., Barr J. F., Noelken M. E., Hudson B. G. Properties of the globular domain of type IV collagen and its relationship to the Goodpasture antigen. J Biol Chem. 1985 Mar 25;260(6):3739–3747. [PubMed] [Google Scholar]
  7. Coers W., Huitema S., Smeenk R. J., Salant D. J., Grond J., Weening J. J. Quantification of glomerular epithelial cell adhesion by using anti-DNA antibodies in ELISA. Hybridoma. 1992 Aug;11(4):529–537. doi: 10.1089/hyb.1992.11.529. [DOI] [PubMed] [Google Scholar]
  8. Davies M., Barrett A. J., Travis J., Sanders E., Coles G. A. The degradation of human glomerular basement membrane with purified lysosomal proteinases: evidence for the pathogenic role of the polymorphonuclear leucocyte in glomerulonephritis. Clin Sci Mol Med. 1978 Mar;54(3):233–240. doi: 10.1042/cs0540233. [DOI] [PubMed] [Google Scholar]
  9. Davies M., Coles G. A., Hughes K. T. Glomerular basement membrane injury by neutrophil and monocyte neutral proteinases. Ren Physiol. 1980;3(1-6):106–111. doi: 10.1159/000172748. [DOI] [PubMed] [Google Scholar]
  10. Davies M., Coles G. A., Thomas G. J., Martin J., Lovett D. H. Proteinases and the glomerulus: their role in glomerular diseases. Klin Wochenschr. 1990 Nov 16;68(22):1145–1149. doi: 10.1007/BF01798066. [DOI] [PubMed] [Google Scholar]
  11. Davies M., Hughes K. T., Thomas G. J. Evidence that kidney lysosomal proteinases degrade the collagen of glomerular basement membrane. Ren Physiol. 1980;3(1-6):116–119. doi: 10.1159/000172750. [DOI] [PubMed] [Google Scholar]
  12. Davies M., Thomas G. J., Martin J., Lovett D. H. The purification and characterization of a glomerular-basement-membrane-degrading neutral proteinase from rat mesangial cells. Biochem J. 1988 Apr 15;251(2):419–425. doi: 10.1042/bj2510419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Derry C. J., Pickering M., Baker C., Pusey C. D. Identification of the Goodpasture antigen, alpha 3(IV) NC1, and four other NC1 domains of type IV collagen, by amino-terminal sequence analysis of human glomerular basement membrane separated by two-dimensional electrophoresis. Exp Nephrol. 1994 Jul-Aug;2(4):249–256. [PubMed] [Google Scholar]
  14. Derry C. J., Pusey C. D. Tissue-specific distribution of the Goodpasture antigen demonstrated by 2-D electrophoresis and western blotting. Nephrol Dial Transplant. 1994;9(4):355–361. [PubMed] [Google Scholar]
  15. Donovan K. L., Davies M., Coles G. A., Williams J. D. Relative roles of elastase and reactive oxygen species in the degradation of human glomerular basement membrane by intact human neutrophils. Kidney Int. 1994 Jun;45(6):1555–1561. doi: 10.1038/ki.1994.205. [DOI] [PubMed] [Google Scholar]
  16. Enders G. C., Kahsai T. Z., Lian G., Funabiki K., Killen P. D., Hudson B. G. Developmental changes in seminiferous tubule extracellular matrix components of the mouse testis: alpha 3(IV) collagen chain expressed at the initiation of spermatogenesis. Biol Reprod. 1995 Dec;53(6):1489–1499. doi: 10.1095/biolreprod53.6.1489. [DOI] [PubMed] [Google Scholar]
  17. Grünfeld J. P. The clinical spectrum of hereditary nephritis. Kidney Int. 1985 Jan;27(1):83–92. doi: 10.1038/ki.1985.14. [DOI] [PubMed] [Google Scholar]
  18. Guan J. L., Chen H. C. Signal transduction in cell-matrix interactions. Int Rev Cytol. 1996;168:81–121. [PubMed] [Google Scholar]
  19. Gunwar S., Ballester F., Kalluri R., Timoneda J., Chonko A. M., Edwards S. J., Noelken M. E., Hudson B. G. Glomerular basement membrane. Identification of dimeric subunits of the noncollagenous domain (hexamer) of collagen IV and the Goodpasture antigen. J Biol Chem. 1991 Aug 15;266(23):15318–15324. [PubMed] [Google Scholar]
  20. Gunwar S., Bejarano P. A., Kalluri R., Langeveld J. P., Wisdom B. J., Jr, Noelken M. E., Hudson B. G. Alveolar basement membrane: molecular properties of the noncollagenous domain (hexamer) of collagen IV and its reactivity with Goodpasture autoantibodies. Am J Respir Cell Mol Biol. 1991 Aug;5(2):107–112. doi: 10.1165/ajrcmb/5.2.107. [DOI] [PubMed] [Google Scholar]
  21. Gunwar S., Noelken M. E., Hudson B. G. Properties of the collagenous domain of the alpha 3(IV) chain, the Goodpasture antigen, of lens basement membrane collagen. Selective cleavage of alpha (IV) chains with retention of their triple helical structure and noncollagenous domain. J Biol Chem. 1991 Jul 25;266(21):14088–14094. [PubMed] [Google Scholar]
  22. Haberstroh U., Zahner G., Disser M., Thaiss F., Wolf G., Stahl R. A. TGF-beta stimulates rat mesangial cell proliferation in culture: role of PDGF beta-receptor expression. Am J Physiol. 1993 Feb;264(2 Pt 2):F199–F205. doi: 10.1152/ajprenal.1993.264.2.F199. [DOI] [PubMed] [Google Scholar]
  23. Hudson B. G., Kalluri R., Gunwar S., Weber M., Ballester F., Hudson J. K., Noelken M. E., Sarras M., Richardson W. R., Saus J. The pathogenesis of Alport syndrome involves type IV collagen molecules containing the alpha 3(IV) chain: evidence from anti-GBM nephritis after renal transplantation. Kidney Int. 1992 Jul;42(1):179–187. doi: 10.1038/ki.1992.276. [DOI] [PubMed] [Google Scholar]
  24. Hudson B. G., Reeders S. T., Tryggvason K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem. 1993 Dec 15;268(35):26033–26036. [PubMed] [Google Scholar]
  25. Hughes K. T., Coles G. A., Harry T. R., Davies M. Some properties of human blood monocyte cell lysate neutral proteinase(s). Biochim Biophys Acta. 1981 Nov 13;662(1):111–118. doi: 10.1016/0005-2744(81)90230-8. [DOI] [PubMed] [Google Scholar]
  26. Huszar G., Maiocco J., Naftolin F. Monitoring of collagen and collagen fragments in chromatography of protein mixtures. Anal Biochem. 1980 Jul 1;105(2):424–429. doi: 10.1016/0003-2697(80)90481-9. [DOI] [PubMed] [Google Scholar]
  27. Kalluri R., Sun M. J., Hudson B. G., Neilson E. G. The Goodpasture autoantigen. Structural delineation of two immunologically privileged epitopes on alpha3(IV) chain of type IV collagen. J Biol Chem. 1996 Apr 12;271(15):9062–9068. doi: 10.1074/jbc.271.15.9062. [DOI] [PubMed] [Google Scholar]
  28. Kalluri R., Weber M., Netzer K. O., Sun M. J., Neilson E. G., Hudson B. G. COL4A5 gene deletion and production of post-transplant anti-alpha 3(IV) collagen alloantibodies in Alport syndrome. Kidney Int. 1994 Mar;45(3):721–726. doi: 10.1038/ki.1994.96. [DOI] [PubMed] [Google Scholar]
  29. Kalluri R., Wilson C. B., Weber M., Gunwar S., Chonko A. M., Neilson E. G., Hudson B. G. Identification of the alpha 3 chain of type IV collagen as the common autoantigen in antibasement membrane disease and Goodpasture syndrome. J Am Soc Nephrol. 1995 Oct;6(4):1178–1185. doi: 10.1681/ASN.V641178. [DOI] [PubMed] [Google Scholar]
  30. Kalluri R., van den Heuvel L. P., Smeets H. J., Schroder C. H., Lemmink H. H., Boutaud A., Neilson E. G., Hudson B. G. A COL4A3 gene mutation and post-transplant anti-alpha 3(IV) collagen alloantibodies in Alport syndrome. Kidney Int. 1995 Apr;47(4):1199–1204. doi: 10.1038/ki.1995.170. [DOI] [PubMed] [Google Scholar]
  31. Kashtan C. E., Michael A. F. Alport syndrome: from bedside to genome to bedside. Am J Kidney Dis. 1993 Nov;22(5):627–640. doi: 10.1016/s0272-6386(12)80424-0. [DOI] [PubMed] [Google Scholar]
  32. Kashtan C., Fish A. J., Kleppel M., Yoshioka K., Michael A. F. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis. J Clin Invest. 1986 Oct;78(4):1035–1044. doi: 10.1172/JCI112658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kaushal G. P., Walker P. D., Shah S. V. An old enzyme with a new function: purification and characterization of a distinct matrix-degrading metalloproteinase in rat kidney cortex and its identification as meprin. J Cell Biol. 1994 Sep;126(5):1319–1327. doi: 10.1083/jcb.126.5.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kleinman H. K., McGarvey M. L., Hassell J. R., Star V. L., Cannon F. B., Laurie G. W., Martin G. R. Basement membrane complexes with biological activity. Biochemistry. 1986 Jan 28;25(2):312–318. doi: 10.1021/bi00350a005. [DOI] [PubMed] [Google Scholar]
  35. Kleppel M. M., Michael A. F. Expression of novel basement membrane components in the developing human kidney and eye. Am J Anat. 1990 Feb;187(2):165–174. doi: 10.1002/aja.1001870205. [DOI] [PubMed] [Google Scholar]
  36. Knowlden J., Martin J., Davies M., Williams J. D. Metalloproteinase generation by human glomerular epithelial cells. Kidney Int. 1995 Jun;47(6):1682–1689. doi: 10.1038/ki.1995.233. [DOI] [PubMed] [Google Scholar]
  37. Langeveld J. P., Wieslander J., Timoneda J., McKinney P., Butkowski R. J., Wisdom B. J., Jr, Hudson B. G. Structural heterogeneity of the noncollagenous domain of basement membrane collagen. J Biol Chem. 1988 Jul 25;263(21):10481–10488. [PubMed] [Google Scholar]
  38. Lin C. Q., Bissell M. J. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 1993 Jun;7(9):737–743. doi: 10.1096/fasebj.7.9.8330681. [DOI] [PubMed] [Google Scholar]
  39. Lovett D. H., Johnson R. J., Marti H. P., Martin J., Davies M., Couser W. G. Structural characterization of the mesangial cell type IV collagenase and enhanced expression in a model of immune complex-mediated glomerulonephritis. Am J Pathol. 1992 Jul;141(1):85–98. [PMC free article] [PubMed] [Google Scholar]
  40. Lovett D. H., Sterzel R. B., Kashgarian M., Ryan J. L. Neutral proteinase activity produced in vitro by cells of the glomerular mesangium. Kidney Int. 1983 Feb;23(2):342–349. doi: 10.1038/ki.1983.25. [DOI] [PubMed] [Google Scholar]
  41. Martin J., Davies M., Thomas G., Lovett D. H. Human mesangial cells secrete a GBM-degrading neutral proteinase and a specific inhibitor. Kidney Int. 1989 Nov;36(5):790–801. doi: 10.1038/ki.1989.264. [DOI] [PubMed] [Google Scholar]
  42. McCoy R. C., Johnson H. K., Stone W. J., Wilson C. B. Absence of nephritogenic GBM antigen(s) in some patients with hereditary nephritis. Kidney Int. 1982 Apr;21(4):642–652. doi: 10.1038/ki.1982.72. [DOI] [PubMed] [Google Scholar]
  43. Miner J. H., Sanes J. R. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol. 1994 Nov;127(3):879–891. doi: 10.1083/jcb.127.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nakanishi K., Yoshikawa N., Iijima K., Kitagawa K., Nakamura H., Ito H., Yoshioka K., Kagawa M., Sado Y. Immunohistochemical study of alpha 1-5 chains of type IV collagen in hereditary nephritis. Kidney Int. 1994 Nov;46(5):1413–1421. doi: 10.1038/ki.1994.413. [DOI] [PubMed] [Google Scholar]
  45. O'Meara Y. M., Natori Y., Minto A. W., Goldstein D. J., Manning E. C., Salant D. J. Nephrotoxic antiserum identifies a beta 1-integrin on rat glomerular epithelial cells. Am J Physiol. 1992 Jun;262(6 Pt 2):F1083–F1091. doi: 10.1152/ajprenal.1992.262.6.F1083. [DOI] [PubMed] [Google Scholar]
  46. Peissel B., Geng L., Kalluri R., Kashtan C., Rennke H. G., Gallo G. R., Yoshioka K., Sun M. J., Hudson B. G., Neilson E. G. Comparative distribution of the alpha 1(IV), alpha 5(IV), and alpha 6(IV) collagen chains in normal human adult and fetal tissues and in kidneys from X-linked Alport syndrome patients. J Clin Invest. 1995 Oct;96(4):1948–1957. doi: 10.1172/JCI118241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Reddy G. K., Gunwar S., Kalluri R., Hudson B. G., Noelken M. E. Structure and composition of type IV collagen of bovine aorta. Biochim Biophys Acta. 1993 Jul 11;1157(3):241–251. doi: 10.1016/0304-4165(93)90106-i. [DOI] [PubMed] [Google Scholar]
  48. Shah S. V., Baricos W. H., Basci A. Degradation of human glomerular basement membrane by stimulated neutrophils. Activation of a metalloproteinase(s) by reactive oxygen metabolites. J Clin Invest. 1987 Jan;79(1):25–31. doi: 10.1172/JCI112790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Singh A. K. Presence of lysosomal enzymes in the normal glomerular basement membrane matrix. Histochem J. 1993 Aug;25(8):562–568. [PubMed] [Google Scholar]
  50. Sugimoto M., Oohashi T., Ninomiya Y. The genes COL4A5 and COL4A6, coding for basement membrane collagen chains alpha 5(IV) and alpha 6(IV), are located head-to-head in close proximity on human chromosome Xq22 and COL4A6 is transcribed from two alternative promoters. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11679–11683. doi: 10.1073/pnas.91.24.11679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Thorner P. S., Zheng K., Kalluri R., Jacobs R., Hudson B. G. Coordinate gene expression of the alpha3, alpha4, and alpha5 chains of collagen type IV. Evidence from a canine model of X-linked nephritis with a COL4A5 gene mutation. J Biol Chem. 1996 Jun 7;271(23):13821–13828. doi: 10.1074/jbc.271.23.13821. [DOI] [PubMed] [Google Scholar]
  52. Timoneda J., Gunwar S., Monfort G., Saus J., Noelken M. E., Hudson B. G. Unusual dissociative behavior of the noncollagenous domain (hexamer) of basement membrane collagen during electrophoresis and chromatofocusing. Connect Tissue Res. 1990;24(3-4):169–186. doi: 10.3109/03008209009152147. [DOI] [PubMed] [Google Scholar]
  53. Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989 Apr 1;180(3):487–502. doi: 10.1111/j.1432-1033.1989.tb14673.x. [DOI] [PubMed] [Google Scholar]
  54. Tryggvason K., Risteli J., Kivirikko K. I. Glomerular basement membrane collagen and activities of the intracellular enzymes of collagen biosynthesis in congenital nephrotic syndrome of the Finnish type. Clin Chim Acta. 1978 Jan 16;82(3):233–240. doi: 10.1016/0009-8981(78)90005-0. [DOI] [PubMed] [Google Scholar]
  55. Tryggvason K., Zhou J., Hostikka S. L., Shows T. B. Molecular genetics of Alport syndrome. Kidney Int. 1993 Jan;43(1):38–44. doi: 10.1038/ki.1993.8. [DOI] [PubMed] [Google Scholar]
  56. Vissers M. C., Winterbourn C. C. Gelatinase contributes to the degradation of glomerular basement membrane collagen by human neutrophils. Coll Relat Res. 1988 Mar;8(2):113–122. doi: 10.1016/s0174-173x(88)80023-2. [DOI] [PubMed] [Google Scholar]
  57. Walker F. The origin, turnover and removal of glomerular basement-membrane. J Pathol. 1973 Jul;110(3):233–244. doi: 10.1002/path.1711100306. [DOI] [PubMed] [Google Scholar]
  58. Walker P. D., Kaushal G. P., Shah S. V. Presence of a distinct extracellular matrix-degrading metalloproteinase activity in renal tubules. J Am Soc Nephrol. 1994 Jul;5(1):55–61. doi: 10.1681/ASN.V5155. [DOI] [PubMed] [Google Scholar]
  59. West T. W., Fox J. W., Jodlowski M., Freytag J. W., Hudson B. G. Bovine glomerular basement membrane. Properties of the collagenous domain. J Biol Chem. 1980 Nov 10;255(21):10451–10459. [PubMed] [Google Scholar]
  60. Wieslander J., Kataja M., Hudson B. G. Characterization of the human Goodpasture antigen. Clin Exp Immunol. 1987 Aug;69(2):332–340. [PMC free article] [PubMed] [Google Scholar]
  61. Wisdom B. J., Jr, Gunwar S., Hudson M. D., Noelken M. E., Hudson B. G. Type IV collagen of Engelbreth-Holm-Swarm tumor matrix: identification of constituent chains. Connect Tissue Res. 1992;27(4):225–234. doi: 10.3109/03008209209006998. [DOI] [PubMed] [Google Scholar]
  62. Wolf G., Ziyadeh F. N., Zahner G., Stahl R. A. Angiotensin II is mitogenic for cultured rat glomerular endothelial cells. Hypertension. 1996 Apr;27(4):897–905. doi: 10.1161/01.hyp.27.4.897. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES