Abstract
Clinical experience suggests nephrotic patients are at risk for malnutrition. To determine if nephrotic patients can adapt successfully to a protein-restricted diet, nephrotic (glomerular filtration rate, 52+/-15 ml/min; urinary protein [Uprot.], 7.2+/-2.2 grams/d) and control subjects completed a crossover comparison of diets providing 0.8 or 1.6 grams protein (plus 1 gram protein/gram Uprot.) and 35 kcal per kg per day. Nitrogen balance (BN) was determined and whole body protein turnover measured during fasting and feeding using intravenous -[1-13C]leucine and intragastric -[5,5, 5- 2H3]leucine. BN was positive in both nephrotic and control subjects consuming either diet and rates of whole-body protein synthesis, protein degradation, and leucine oxidation did not differ between groups. In both nephrotic and control subjects anabolism was due to a suppression of whole-body protein degradation and stimulation of protein synthesis during feeding. The principal compensatory response to dietary protein restriction was a decrease in amino acid oxidation and this response was the same in both groups. With the low protein diet leucine oxidation rates during feeding correlated inversely with Uprot. losses (r = -0.83; P < 0. 05). Conclusions: (a) a diet providing 0.8 gram protein (plus 1 gram protein/gram Uprot.) and 35 kcal per kg per day maintains BN in nephrotic patients; (b) nephrotic patients activate normal anabolic responses to dietary protein restriction (suppression of amino acid oxidation) and feeding (stimulation of protein synthesis and inhibition of protein degradation); (c) the inverse correlation between leucine oxidation and Uprot. losses suggests that proteinuria is a stimulus to conserve dietary essential amino acids.
Full Text
The Full Text of this article is available as a PDF (198.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abumrad N. N., Rabin D., Diamond M. P., Lacy W. W. Use of a heated superficial hand vein as an alternative site for the measurement of amino acid concentrations and for the study of glucose and alanine kinetics in man. Metabolism. 1981 Sep;30(9):936–940. doi: 10.1016/0026-0495(81)90074-3. [DOI] [PubMed] [Google Scholar]
- Adams R. F. Determination of amino acid profiles in biological samples by gas chromatography. J Chromatogr. 1974 Aug 14;95(2):189–212. doi: 10.1016/s0021-9673(00)84078-9. [DOI] [PubMed] [Google Scholar]
- BLAINEY J. D. High protein diets in the treatment of the nephrotic syndrome. Clin Sci. 1954 Nov;13(4):567–581. [PubMed] [Google Scholar]
- Benigni A., Remuzzi G. Glomerular protein trafficking and progression of renal disease to terminal uremia. Semin Nephrol. 1996 May;16(3):151–159. [PubMed] [Google Scholar]
- Bier D. M. Intrinsically difficult problems: the kinetics of body proteins and amino acids in man. Diabetes Metab Rev. 1989 Mar;5(2):111–132. doi: 10.1002/dmr.5610050203. [DOI] [PubMed] [Google Scholar]
- COSTA G. Hypothetical pathway of nitrogen metabolism. Nature. 1960 Nov 12;188:549–552. doi: 10.1038/188549a0. [DOI] [PubMed] [Google Scholar]
- Castellino P., Luzi L., Simonson D. C., Haymond M., DeFronzo R. A. Effect of insulin and plasma amino acid concentrations on leucine metabolism in man. Role of substrate availability on estimates of whole body protein synthesis. J Clin Invest. 1987 Dec;80(6):1784–1793. doi: 10.1172/JCI113272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaves Das Neves H. J., Vasconcelos A. M. Capillary gas chromatography of amino acids, including asparagine and glutamine: sensitive gas chromatographic-mass spectrometric and selected ion monitoring gas chromatographic-mass spectrometric detection of the N,O(S)-tert.-butyldimethylsilyl derivatives. J Chromatogr. 1987 Apr 17;392:249–258. doi: 10.1016/s0021-9673(01)94270-0. [DOI] [PubMed] [Google Scholar]
- Choi E. J., Bailey J., May R. C., Masud T., Maroni B. J. Metabolic responses to nephrosis: effect of a low-protein diet. Am J Physiol. 1994 Mar;266(3 Pt 2):F432–F438. doi: 10.1152/ajprenal.1994.266.3.F432. [DOI] [PubMed] [Google Scholar]
- Choi E. J., May R. C., Bailey J., Masud T., Dixon A., Maroni B. J. Mechanisms of adaptation to proteinuria in adriamycin nephrosis. Am J Physiol. 1993 Aug;265(2 Pt 2):F257–F263. doi: 10.1152/ajprenal.1993.265.2.F257. [DOI] [PubMed] [Google Scholar]
- Fisher H., Brush M. K., Griminger P., Sostman E. R. Nitrogen retention in adult man: a possible factor in protein requirements. Am J Clin Nutr. 1967 Sep;20(9):927–934. doi: 10.1093/ajcn/20.9.927. [DOI] [PubMed] [Google Scholar]
- Goodship T. H., Mitch W. E., Hoerr R. A., Wagner D. A., Steinman T. I., Young V. R. Adaptation to low-protein diets in renal failure: leucine turnover and nitrogen balance. J Am Soc Nephrol. 1990 Jul;1(1):66–75. doi: 10.1681/ASN.V1166. [DOI] [PubMed] [Google Scholar]
- Hoerr R. A., Matthews D. E., Bier D. M., Young V. R. Leucine kinetics from [2H3]- and [13C]leucine infused simultaneously by gut and vein. Am J Physiol. 1991 Jan;260(1 Pt 1):E111–E117. doi: 10.1152/ajpendo.1991.260.1.E111. [DOI] [PubMed] [Google Scholar]
- Hoerr R. A., Yu Y. M., Wagner D. A., Burke J. F., Young V. R. Recovery of 13C in breath from NaH13CO3 infused by gut and vein: effect of feeding. Am J Physiol. 1989 Sep;257(3 Pt 1):E426–E438. doi: 10.1152/ajpendo.1989.257.3.E426. [DOI] [PubMed] [Google Scholar]
- Horber F. F., Horber-Feyder C. M., Krayer S., Schwenk W. F., Haymond M. W. Plasma reciprocal pool specific activity predicts that of intracellular free leucine for protein synthesis. Am J Physiol. 1989 Sep;257(3 Pt 1):E385–E399. doi: 10.1152/ajpendo.1989.257.3.E385. [DOI] [PubMed] [Google Scholar]
- Ikizler T. A., Greene J. H., Wingard R. L., Parker R. A., Hakim R. M. Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol. 1995 Nov;6(5):1386–1391. doi: 10.1681/ASN.V651386. [DOI] [PubMed] [Google Scholar]
- Jacobson H. R., Striker G. E. Report on a workshop to develop management recommendations for the prevention of progression in chronic renal disease. Am J Kidney Dis. 1995 Jan;25(1):103–106. doi: 10.1016/0272-6386(95)90635-5. [DOI] [PubMed] [Google Scholar]
- Kaysen G. A. Albumin metabolism in the nephrotic syndrome: the effect of dietary protein intake. Am J Kidney Dis. 1988 Dec;12(6):461–480. doi: 10.1016/s0272-6386(88)80097-0. [DOI] [PubMed] [Google Scholar]
- Kaysen G. A., Gambertoglio J., Jimenez I., Jones H., Hutchison F. N. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int. 1986 Feb;29(2):572–577. doi: 10.1038/ki.1986.36. [DOI] [PubMed] [Google Scholar]
- Klahr S., Levey A. S., Beck G. J., Caggiula A. W., Hunsicker L., Kusek J. W., Striker G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994 Mar 31;330(13):877–884. doi: 10.1056/NEJM199403313301301. [DOI] [PubMed] [Google Scholar]
- Kopple J. D., Coburn J. W. Metabolic studies of low protein diets in uremia. I. Nitrogen and potassium. Medicine (Baltimore) 1973 Nov;52(6):583–595. doi: 10.1097/00005792-197311000-00004. [DOI] [PubMed] [Google Scholar]
- Kopple J. D., Monteon F. J., Shaib J. K. Effect of energy intake on nitrogen metabolism in nondialyzed patients with chronic renal failure. Kidney Int. 1986 Mar;29(3):734–742. doi: 10.1038/ki.1986.59. [DOI] [PubMed] [Google Scholar]
- Kopple J. D. Uses and limitations of the balance technique. JPEN J Parenter Enteral Nutr. 1987 Sep-Oct;11(5 Suppl):79S–85S. doi: 10.1177/014860718701100511. [DOI] [PubMed] [Google Scholar]
- Langenbeck U., Luthe H., Schaper G. Keto acids in tissues and biological fluids: O-t-butyldimethylsilyl quinoxalinols as derivatives for sensitive gas chromatographic/mass spectrometric determination. Biomed Mass Spectrom. 1985 Sep;12(9):507–509. doi: 10.1002/bms.1200120912. [DOI] [PubMed] [Google Scholar]
- Maroni B. J., Steinman T. I., Mitch W. E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985 Jan;27(1):58–65. doi: 10.1038/ki.1985.10. [DOI] [PubMed] [Google Scholar]
- Masud T., Young V. R., Chapman T., Maroni B. J. Adaptive responses to very low protein diets: the first comparison of ketoacids to essential amino acids. Kidney Int. 1994 Apr;45(4):1182–1192. doi: 10.1038/ki.1994.157. [DOI] [PubMed] [Google Scholar]
- Matthews D. E., Motil K. J., Rohrbaugh D. K., Burke J. F., Young V. R., Bier D. M. Measurement of leucine metabolism in man from a primed, continuous infusion of L-[1-3C]leucine. Am J Physiol. 1980 May;238(5):E473–E479. doi: 10.1152/ajpendo.1980.238.5.E473. [DOI] [PubMed] [Google Scholar]
- McNurlan M. A., Garlick P. J. Influence of nutrient intake on protein turnover. Diabetes Metab Rev. 1989 Mar;5(2):165–189. doi: 10.1002/dmr.5610050206. [DOI] [PubMed] [Google Scholar]
- Nissen S., Haymond M. W. Changes in leucine kinetics during meal absorption: effects of dietary leucine availability. Am J Physiol. 1986 Jun;250(6 Pt 1):E695–E701. doi: 10.1152/ajpendo.1986.250.6.E695. [DOI] [PubMed] [Google Scholar]
- Oddoye E. A., Margen S. Nitrogen balance studies in humans: long-term effect of high nitrogen intake on nitrogen accretion. J Nutr. 1979 Mar;109(3):363–377. doi: 10.1093/jn/109.3.363. [DOI] [PubMed] [Google Scholar]
- Pacy P. J., Price G. M., Halliday D., Quevedo M. R., Millward D. J. Nitrogen homeostasis in man: the diurnal responses of protein synthesis and degradation and amino acid oxidation to diets with increasing protein intakes. Clin Sci (Lond) 1994 Jan;86(1):103–116. doi: 10.1042/cs0860103. [DOI] [PubMed] [Google Scholar]
- Pedrini M. T., Levey A. S., Lau J., Chalmers T. C., Wang P. H. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996 Apr 1;124(7):627–632. doi: 10.7326/0003-4819-124-7-199604010-00002. [DOI] [PubMed] [Google Scholar]
- Peterson J. C., Adler S., Burkart J. M., Greene T., Hebert L. A., Hunsicker L. G., King A. J., Klahr S., Massry S. G., Seifter J. L. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995 Nov 15;123(10):754–762. doi: 10.7326/0003-4819-123-10-199511150-00003. [DOI] [PubMed] [Google Scholar]
- Rocchiccioli F., Leroux J. P., Cartier P. Quantitation of 2-ketoacids in biological fluids by gas chromatography chemical ionization mass spectrometry of O-trimethylsilyl-quinoxalinol derivatives. Biomed Mass Spectrom. 1981 Apr;8(4):160–164. doi: 10.1002/bms.1200080406. [DOI] [PubMed] [Google Scholar]
- Schoeller D. A., Klein P. D., Watkins J. B., Heim T., MacLean W. C., Jr 13C abundances of nutrients and the effect of variations in 13C isotopic abundances of test meals formulated for 13CO2 breath tests. Am J Clin Nutr. 1980 Nov;33(11):2375–2385. doi: 10.1093/ajcn/33.11.2375. [DOI] [PubMed] [Google Scholar]
- Tessari P., Inchiostro S., Biolo G., Trevisan R., Fantin G., Marescotti M. C., Iori E., Tiengo A., Crepaldi G. Differential effects of hyperinsulinemia and hyperaminoacidemia on leucine-carbon metabolism in vivo. Evidence for distinct mechanisms in regulation of net amino acid deposition. J Clin Invest. 1987 Apr;79(4):1062–1069. doi: 10.1172/JCI112919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walser M., Coulter A. W., Dighe S., Crantz F. R. The effect of keto-analogues of essential amino acids in severe chronic uremia. J Clin Invest. 1973 Mar;52(3):678–690. doi: 10.1172/JCI107229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walser M., Hill S., Tomalis E. A. Treatment of nephrotic adults with a supplemented, very low-protein diet. Am J Kidney Dis. 1996 Sep;28(3):354–364. doi: 10.1016/s0272-6386(96)90492-8. [DOI] [PubMed] [Google Scholar]