Abstract
Multiple steps are involved in the metastasis of cancer cells from primary sites to distant organs. These steps should be considered in the design of pharmacologic approaches to prevent or inhibit the metastatic process. In the present study, we have compared the effects of inhibiting several steps involved in the bone metastatic process individually with inhibition of both together. The steps we chose were matrix metalloproteinase (MMP) secretion, likely involved in tumor cell invasion, and osteoclastic bone resorption, the final step in the process. We used an experimental model in which inoculation of human estrogen-independent breast cancer MDA-231 cells into the left cardiac ventricle of female nude mice causes osteolytic lesions in bone. To inhibit cancer invasiveness, the tissue inhibitor of the MMP-2 (TIMP-2), which is a natural inhibitor of MMPs, was overexpressed in MDA-231 cells. To inhibit bone resorption, a potent bisphosphonate, ibandronate (4 microg/mouse) was daily administered subcutaneously. Nude mice received either; (a) nontransfected MDA-231 cells; (b) nontransfected MDA231 cells and ibandronate; (c) TIMP-2-transfected MDA-231 cells; or (d) TIMP-2-transfected MDA-231 cells and ibandronate. In mice from group a, radiographs revealed multiple osteolytic lesions. However, in mice from group b or group c, osteolytic lesions were markedly decreased. Of particular note, in animals from group d receiving both ibandronate and TIMP-2-transfected MDA-231 cells, there were no radiologically detectable osteolytic lesions. Survival rate was increased in mice of groups c and d. There was no difference in local enlargement in the mammary fat pad between nontransfected and TIMP-2-transfected MDA-231 cells. These results suggest that inhibition of both MMPs and osteoclastic bone resorption are more efficacious treatment for prevention of osteolytic lesions than either alone, and suggest that when therapies are designed based on the uniqueness of the bone microenvironment and combined with several common steps in the metastatic process, osteolytic bone metastases can be more efficiently and selectively inhibited.
Full Text
The Full Text of this article is available as a PDF (414.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arteaga C. L., Hurd S. D., Winnier A. R., Johnson M. D., Fendly B. M., Forbes J. T. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest. 1993 Dec;92(6):2569–2576. doi: 10.1172/JCI116871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azzam H. S., Arand G., Lippman M. E., Thompson E. W. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst. 1993 Nov 3;85(21):1758–1764. doi: 10.1093/jnci/85.21.1758. [DOI] [PubMed] [Google Scholar]
- Blavier L., Delaissé J. M. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J Cell Sci. 1995 Dec;108(Pt 12):3649–3659. doi: 10.1242/jcs.108.12.3649. [DOI] [PubMed] [Google Scholar]
- Cailleau R., Young R., Olivé M., Reeves W. J., Jr Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974 Sep;53(3):661–674. doi: 10.1093/jnci/53.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cifuentes N., Pickren J. W. Metastases from carcinoma of mammary gland: an autopsy study. J Surg Oncol. 1979;11(3):193–205. doi: 10.1002/jso.2930110303. [DOI] [PubMed] [Google Scholar]
- Coleman R. E., Rubens R. D. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987 Jan;55(1):61–66. doi: 10.1038/bjc.1987.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Bruyn P. P., Michelson S., Thomas T. B. The migration of blood cells of the bone marrow through the sinusoidal wall. J Morphol. 1971 Apr;133(4):417–437. doi: 10.1002/jmor.1051330406. [DOI] [PubMed] [Google Scholar]
- DeClerck Y. A., Perez N., Shimada H., Boone T. C., Langley K. E., Taylor S. M. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 1992 Feb 1;52(3):701–708. [PubMed] [Google Scholar]
- Fidler I. J. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990 Oct 1;50(19):6130–6138. [PubMed] [Google Scholar]
- Fidler I. J. Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst. 1995 Nov 1;87(21):1588–1592. doi: 10.1093/jnci/87.21.1588. [DOI] [PubMed] [Google Scholar]
- Fridman R., Bird R. E., Hoyhtya M., Oelkuct M., Komarek D., Liang C. M., Berman M. L., Liotta L. A., Stetler-Stevenson W. G., Fuerst T. R. Expression of human recombinant 72 kDa gelatinase and tissue inhibitor of metalloproteinase-2 (TIMP-2): characterization of complex and free enzyme. Biochem J. 1993 Jan 15;289(Pt 2):411–416. doi: 10.1042/bj2890411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Globus R. K., Plouet J., Gospodarowicz D. Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix. Endocrinology. 1989 Mar;124(3):1539–1547. doi: 10.1210/endo-124-3-1539. [DOI] [PubMed] [Google Scholar]
- Guise T. A., Yin J. J., Taylor S. D., Kumagai Y., Dallas M., Boyce B. F., Yoneda T., Mundy G. R. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996 Oct 1;98(7):1544–1549. doi: 10.1172/JCI118947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayakawa T., Yamashita K., Ohuchi E., Shinagawa A. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci. 1994 Sep;107(Pt 9):2373–2379. doi: 10.1242/jcs.107.9.2373. [DOI] [PubMed] [Google Scholar]
- Hill P. A., Reynolds J. J., Meikle M. C. Inhibition of stimulated bone resorption in vitro by TIMP-1 and TIMP-2. Biochim Biophys Acta. 1993 May 8;1177(1):71–74. doi: 10.1016/0167-4889(93)90159-m. [DOI] [PubMed] [Google Scholar]
- Hortobagyi G. N., Theriault R. L., Porter L., Blayney D., Lipton A., Sinoff C., Wheeler H., Simeone J. F., Seaman J., Knight R. D. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med. 1996 Dec 12;335(24):1785–1791. doi: 10.1056/NEJM199612123352401. [DOI] [PubMed] [Google Scholar]
- Kleiner D. E., Jr, Unsworth E. J., Krutzsch H. C., Stetler-Stevenson W. G. Higher-order complex formation between the 72-kilodalton type IV collagenase and tissue inhibitor of metalloproteinases-2. Biochemistry. 1992 Feb 18;31(6):1665–1672. doi: 10.1021/bi00121a013. [DOI] [PubMed] [Google Scholar]
- Koop S., Khokha R., Schmidt E. E., MacDonald I. C., Morris V. L., Chambers A. F., Groom A. C. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res. 1994 Sep 1;54(17):4791–4797. [PubMed] [Google Scholar]
- MacDougall J. R., Matrisian L. M. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 1995 Dec;14(4):351–362. doi: 10.1007/BF00690603. [DOI] [PubMed] [Google Scholar]
- Manicourt D. H., Lefebvre V. An assay for matrix metalloproteinases and other proteases acting on proteoglycans, casein, or gelatin. Anal Biochem. 1993 Dec;215(2):171–179. doi: 10.1006/abio.1993.1572. [DOI] [PubMed] [Google Scholar]
- Mbalaviele G., Dunstan C. R., Sasaki A., Williams P. J., Mundy G. R., Yoneda T. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res. 1996 Sep 1;56(17):4063–4070. [PubMed] [Google Scholar]
- Montgomery A. M., Mueller B. M., Reisfeld R. A., Taylor S. M., DeClerck Y. A. Effect of tissue inhibitor of the matrix metalloproteinases-2 expression on the growth and spontaneous metastasis of a human melanoma cell line. Cancer Res. 1994 Oct 15;54(20):5467–5473. [PubMed] [Google Scholar]
- Mühlbauer R. C., Bauss F., Schenk R., Janner M., Bosies E., Strein K., Fleisch H. BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res. 1991 Sep;6(9):1003–1011. doi: 10.1002/jbmr.5650060915. [DOI] [PubMed] [Google Scholar]
- Nakai M., Mundy G. R., Williams P. J., Boyce B., Yoneda T. A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice. Cancer Res. 1992 Oct 1;52(19):5395–5399. [PubMed] [Google Scholar]
- Okada T., Okuno H., Mitsui Y. A novel in vitro assay system for transendothelial tumor cell invasion: significance of E-selectin and alpha 3 integrin in the transendothelial invasion by HT1080 fibrosarcoma cells. Clin Exp Metastasis. 1994 Jul;12(4):305–314. doi: 10.1007/BF01753837. [DOI] [PubMed] [Google Scholar]
- Okada Y., Naka K., Kawamura K., Matsumoto T., Nakanishi I., Fujimoto N., Sato H., Seiki M. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest. 1995 Mar;72(3):311–322. [PubMed] [Google Scholar]
- Okado T., Hawley R. G. Adhesion molecules involved in the binding of murine myeloma cells to bone marrow stromal elements. Int J Cancer. 1995 Dec 11;63(6):823–830. doi: 10.1002/ijc.2910630613. [DOI] [PubMed] [Google Scholar]
- Polette M., Clavel C., Cockett M., Girod de Bentzmann S., Murphy G., Birembaut P. Detection and localization of mRNAs encoding matrix metalloproteinases and their tissue inhibitor in human breast pathology. Invasion Metastasis. 1993;13(1):31–37. [PubMed] [Google Scholar]
- Price J. E., Polyzos A., Zhang R. D., Daniels L. M. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 1990 Feb 1;50(3):717–721. [PubMed] [Google Scholar]
- Ray J. M., Stetler-Stevenson W. G. Gelatinase A activity directly modulates melanoma cell adhesion and spreading. EMBO J. 1995 Mar 1;14(5):908–917. doi: 10.1002/j.1460-2075.1995.tb07072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruoslahti E. How cancer spreads. Sci Am. 1996 Sep;275(3):72–77. doi: 10.1038/scientificamerican0996-72. [DOI] [PubMed] [Google Scholar]
- Rusciano D., Burger M. M. Why do cancer cells metastasize into particular organs? Bioessays. 1992 Mar;14(3):185–194. doi: 10.1002/bies.950140309. [DOI] [PubMed] [Google Scholar]
- Sasaki A., Boyce B. F., Story B., Wright K. R., Chapman M., Boyce R., Mundy G. R., Yoneda T. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res. 1995 Aug 15;55(16):3551–3557. [PubMed] [Google Scholar]
- Sledge G. W., Jr, Qulali M., Goulet R., Bone E. A., Fife R. Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J Natl Cancer Inst. 1995 Oct 18;87(20):1546–1550. doi: 10.1093/jnci/87.20.1546. [DOI] [PubMed] [Google Scholar]
- Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol. 1993 Oct;5(5):806–811. doi: 10.1016/0955-0674(93)90029-p. [DOI] [PubMed] [Google Scholar]
- Wingo P. A., Tong T., Bolden S. Cancer statistics, 1995. CA Cancer J Clin. 1995 Jan-Feb;45(1):8–30. doi: 10.3322/canjclin.45.1.8. [DOI] [PubMed] [Google Scholar]
- Witty J. P., Foster S. A., Stricklin G. P., Matrisian L. M., Stern P. H. Parathyroid hormone-induced resorption in fetal rat limb bones is associated with production of the metalloproteinases collagenase and gelatinase B. J Bone Miner Res. 1996 Jan;11(1):72–78. doi: 10.1002/jbmr.5650110111. [DOI] [PubMed] [Google Scholar]
- Yoneda T., Aufdemorte T. B., Nishimura R., Nishikawa N., Sakuda M., Alsina M. M., Chavez J. B., Mundy G. R. Occurrence of hypercalcemia and leukocytosis with cachexia in a human squamous cell carcinoma of the maxilla in athymic nude mice: a novel experimental model of three concomitant paraneoplastic syndromes. J Clin Oncol. 1991 Mar;9(3):468–477. doi: 10.1200/JCO.1991.9.3.468. [DOI] [PubMed] [Google Scholar]
- Yoneda T., Sasaki A., Mundy G. R. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32(1):73–84. doi: 10.1007/BF00666208. [DOI] [PubMed] [Google Scholar]
- Zucker S., Lysik R. M., Zarrabi M. H., Moll U. M(r) 92,000 type IV collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer Res. 1993 Jan 1;53(1):140–146. [PubMed] [Google Scholar]
