Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 1;99(11):2602–2609. doi: 10.1172/JCI119448

ATP-sensitive potassium channels mediate contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle.

G D Thomas 1, J Hansen 1, R G Victor 1
PMCID: PMC508105  PMID: 9169489

Abstract

Sympathetic vasoconstriction is sensitive to inhibition by metabolic events in contracting rat and human skeletal muscle, but the underlying cellular mechanisms are unknown. In rats, this inhibition involves mainly alpha2-adrenergic vasoconstriction, which relies heavily on Ca2+ influx through voltage-dependent Ca2+ channels. We therefore hypothesized that contraction-induced inhibition of sympathetic vasoconstriction is mediated by ATP-sensitive potassium (KATP) channels, a hyperpolarizing vasodilator mechanism that could be activated by some metabolic product(s) of skeletal muscle contraction. We tested this hypothesis in anesthetized rats by measuring femoral artery blood flow responses to lumbar sympathetic nerve stimulation or intraarterial hindlimb infusion of the specific alpha2-adrenergic agonist UK 14,304 during KATP channel activation with diazoxide in resting hindlimb and during KATP channel block with glibenclamide in contracting hindlimb. The major new findings are twofold. First, like muscle contraction, pharmacologic activation of KATP channels with diazoxide in resting hindlimb dose dependently attenuated the vasoconstrictor responses to either sympathetic nerve stimulation or intraarterial UK 14,304. Second, the large contraction-induced attenuation in sympathetic vasoconstriction elicited by nerve stimulation or UK 14,304 was partially reversed when the physiologic activation of KATP channels produced by muscle contraction was prevented with glibenclamide. We conclude that contraction-induced activation of KATP channels is a major mechanism underlying metabolic inhibition of sympathetic vasoconstriction in exercising skeletal muscle.

Full Text

The Full Text of this article is available as a PDF (239.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. A., Hoffman R. P., Balon T. W., Sinkey C. A., Mark A. L. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991 Jun;87(6):2246–2252. doi: 10.1172/JCI115260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouchard J. F., Dumont E., Lamontagne D. Evidence that prostaglandins I2, E2, and D2 may activate ATP sensitive potassium channels in the isolated rat heart. Cardiovasc Res. 1994 Jun;28(6):901–905. doi: 10.1093/cvr/28.6.901. [DOI] [PubMed] [Google Scholar]
  3. Comtois A., Sinderby C., Comtois N., Grassino A., Renaud J. M. An ATP-sensitive potassium channel blocker decreases diaphragmatic circulation in anesthetized dogs. J Appl Physiol (1985) 1994 Jul;77(1):127–134. doi: 10.1152/jappl.1994.77.1.127. [DOI] [PubMed] [Google Scholar]
  4. Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
  5. Creager M. A., Liang C. S., Coffman J. D. Beta adrenergic-mediated vasodilator response to insulin in the human forearm. J Pharmacol Exp Ther. 1985 Dec;235(3):709–714. [PubMed] [Google Scholar]
  6. Davies N. W. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature. 1990 Jan 25;343(6256):375–377. doi: 10.1038/343375a0. [DOI] [PubMed] [Google Scholar]
  7. Gopalakrishnan M., Triggle D. J. Regulation of ATP-sensitive K+ channels by chronic glyburide and pinacidil administration. Biochem Pharmacol. 1992 Nov 3;44(9):1843–1847. doi: 10.1016/0006-2952(92)90080-3. [DOI] [PubMed] [Google Scholar]
  8. Hansen J., Thomas G. D., Harris S. A., Parsons W. J., Victor R. G. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest. 1996 Jul 15;98(2):584–596. doi: 10.1172/JCI118826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jackson W. F. Arteriolar tone is determined by activity of ATP-sensitive potassium channels. Am J Physiol. 1993 Nov;265(5 Pt 2):H1797–H1803. doi: 10.1152/ajpheart.1993.265.5.H1797. [DOI] [PubMed] [Google Scholar]
  10. Jackson W. F., König A., Dambacher T., Busse R. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol. 1993 Jan;264(1 Pt 2):H238–H243. doi: 10.1152/ajpheart.1993.264.1.H238. [DOI] [PubMed] [Google Scholar]
  11. Janigro D., West G. A., Gordon E. L., Winn H. R. ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol. 1993 Sep;265(3 Pt 1):C812–C821. doi: 10.1152/ajpcell.1993.265.3.C812. [DOI] [PubMed] [Google Scholar]
  12. Kalsner S. Hypoxic relaxation in functionally intact cattle coronary artery segments involves K+ ATP channels. J Pharmacol Exp Ther. 1995 Dec;275(3):1219–1226. [PubMed] [Google Scholar]
  13. Keung E. C., Li Q. Lactate activates ATP-sensitive potassium channels in guinea pig ventricular myocytes. J Clin Invest. 1991 Nov;88(5):1772–1777. doi: 10.1172/JCI115497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kleppisch T., Nelson M. T. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12441–12445. doi: 10.1073/pnas.92.26.12441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kosmas E. N., Levy R. D., Hussain S. N. Acute effects of glyburide on the regulation of peripheral blood flow in normal humans. Eur J Pharmacol. 1995 Feb 14;274(1-3):193–199. doi: 10.1016/0014-2999(94)00732-m. [DOI] [PubMed] [Google Scholar]
  16. Lembo G., Iaccarino G., Rendina V., Volpe M., Trimarco B. Insulin blunts sympathetic vasoconstriction through the alpha 2-adrenergic pathway in humans. Hypertension. 1994 Oct;24(4):429–438. doi: 10.1161/01.hyp.24.4.429. [DOI] [PubMed] [Google Scholar]
  17. Marshall J. M., Thomas T., Turner L. A link between adenosine, ATP-sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia. J Physiol. 1993 Dec;472:1–9. doi: 10.1113/jphysiol.1993.sp019931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGillivray-Anderson K. M., Faber J. E. Effect of acidosis on contraction of microvascular smooth muscle by alpha 1- and alpha 2-adrenoceptors. Implications for neural and metabolic regulation. Circ Res. 1990 Jun;66(6):1643–1657. doi: 10.1161/01.res.66.6.1643. [DOI] [PubMed] [Google Scholar]
  19. McGillivray-Anderson K. M., Faber J. E. Effect of reduced blood flow on alpha 1- and alpha 2-adrenoceptor constriction of rat skeletal muscle microvessels. Circ Res. 1991 Jul;69(1):165–173. doi: 10.1161/01.res.69.1.165. [DOI] [PubMed] [Google Scholar]
  20. Medgett I. C., Hicks P. E., Langer S. Z. Effect of acidosis on alpha 1- and alpha 2-adrenoceptor-mediated vasoconstrictor responses in isolated arteries. Eur J Pharmacol. 1987 Mar 31;135(3):443–447. doi: 10.1016/0014-2999(87)90698-4. [DOI] [PubMed] [Google Scholar]
  21. Miller R. G., Boska M. D., Moussavi R. S., Carson P. J., Weiner M. W. 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise. J Clin Invest. 1988 Apr;81(4):1190–1196. doi: 10.1172/JCI113434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minkes R. K., Santiago J. A., McMahon T. J., Kadowitz P. J. Role of K+ATP channels and EDRF in reactive hyperemia in the hindquarters vascular bed of cats. Am J Physiol. 1995 Nov;269(5 Pt 2):H1704–H1712. doi: 10.1152/ajpheart.1995.269.5.H1704. [DOI] [PubMed] [Google Scholar]
  23. Minneman K. P. Alpha 1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev. 1988 Jun;40(2):87–119. [PubMed] [Google Scholar]
  24. Mironneau J., Macrez-Leprêtre N. Modulation of Ca2+ channels by alpha 1A- and alpha 2A-adrenoceptors in vascular myocytes: involvement of different transduction pathways. Cell Signal. 1995 Jul;7(5):471–479. doi: 10.1016/0898-6568(95)00014-g. [DOI] [PubMed] [Google Scholar]
  25. Moreau R., Komeichi H., Kirstetter P., Yang S., Aupetit-Faisant B., Cailmail S., Lebrec D. Effects of glibenclamide on systemic and splanchnic haemodynamics in conscious rats. Br J Pharmacol. 1994 Jun;112(2):649–653. doi: 10.1111/j.1476-5381.1994.tb13124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mori H., Chujo M., Tanaka E., Yamakawa A., Shinozaki Y., Mohamed M. U., Nakazawa H. Modulation of adrenergic coronary vasoconstriction via ATP-sensitive potassium channel. Am J Physiol. 1995 Mar;268(3 Pt 2):H1077–H1085. doi: 10.1152/ajpheart.1995.268.3.H1077. [DOI] [PubMed] [Google Scholar]
  27. Murphy M. E., Brayden J. E. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol. 1995 Jul 1;486(Pt 1):47–58. doi: 10.1113/jphysiol.1995.sp020789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakai T., Ichihara K. Effects of diazoxide on norepinephrine-induced vasocontraction and ischemic myocardium in rats. Biol Pharm Bull. 1994 Oct;17(10):1341–1344. doi: 10.1248/bpb.17.1341. [DOI] [PubMed] [Google Scholar]
  29. Nakhostine N., Lamontagne D. Adenosine contributes to hypoxia-induced vasodilation through ATP-sensitive K+ channel activation. Am J Physiol. 1993 Oct;265(4 Pt 2):H1289–H1293. doi: 10.1152/ajpheart.1993.265.4.H1289. [DOI] [PubMed] [Google Scholar]
  30. Narishige T., Egashira K., Akatsuka Y., Imamura Y., Takahashi T., Kasuya H., Takeshita A. Glibenclamide prevents coronary vasodilation induced by beta 1-adrenoceptor stimulation in dogs. Am J Physiol. 1994 Jan;266(1 Pt 2):H84–H92. doi: 10.1152/ajpheart.1994.266.1.H84. [DOI] [PubMed] [Google Scholar]
  31. Nelson M. T., Quayle J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995 Apr;268(4 Pt 1):C799–C822. doi: 10.1152/ajpcell.1995.268.4.C799. [DOI] [PubMed] [Google Scholar]
  32. Quast U., Guillon J. M., Cavero I. Cellular pharmacology of potassium channel openers in vascular smooth muscle. Cardiovasc Res. 1994 Jun;28(6):805–810. doi: 10.1093/cvr/28.6.805. [DOI] [PubMed] [Google Scholar]
  33. Quayle J. M., Standen N. B. KATP channels in vascular smooth muscle. Cardiovasc Res. 1994 Jun;28(6):797–804. doi: 10.1093/cvr/28.6.797. [DOI] [PubMed] [Google Scholar]
  34. REMENSNYDER J. P., MITCHELL J. H., SARNOFF S. J. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 1962 Sep;11:370–380. doi: 10.1161/01.res.11.3.370. [DOI] [PubMed] [Google Scholar]
  35. Randall M. D., McCulloch A. I. The involvement of ATP-sensitive potassium channels in beta-adrenoceptor-mediated vasorelaxation in the rat isolated mesenteric arterial bed. Br J Pharmacol. 1995 Jun;115(4):607–612. doi: 10.1111/j.1476-5381.1995.tb14975.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rohmann S., Weygandt H., Schelling P., Soei L. K., Becker K. H., Verdouw P. D., Lues I., Häusler G. Effect of bimakalim (EMD 52692), an opener of ATP sensitive potassium channels, on infarct size, coronary blood flow, regional wall function, and oxygen consumption in swine. Cardiovasc Res. 1994 Jun;28(6):858–863. doi: 10.1093/cvr/28.6.858. [DOI] [PubMed] [Google Scholar]
  37. Saito Y., McKay M., Eraslan A., Hester R. L. Functional hyperemia in striated muscle is reduced following blockade of ATP-sensitive potassium channels. Am J Physiol. 1996 May;270(5 Pt 2):H1649–H1654. doi: 10.1152/ajpheart.1996.270.5.H1649. [DOI] [PubMed] [Google Scholar]
  38. Schmid-Antomarchi H., De Weille J., Fosset M., Lazdunski M. The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem. 1987 Nov 25;262(33):15840–15844. [PubMed] [Google Scholar]
  39. Soares-da-Silva P., Fernandes M. H. Inhibition by the putative potassium channel opener pinacidil of the electrically-evoked release of endogenous dopamine and noradrenaline in the rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1990 Oct;342(4):415–421. doi: 10.1007/BF00169458. [DOI] [PubMed] [Google Scholar]
  40. Spruce A. E., Standen N. B., Stanfield P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature. 1985 Aug 22;316(6030):736–738. doi: 10.1038/316736a0. [DOI] [PubMed] [Google Scholar]
  41. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  42. Takata Y., Shimada F., Kato H. Differential effects of diazoxide, cromakalim and pinacidil on adrenergic neurotransmission and 86Rb+ efflux in rat brain cortical slices. J Pharmacol Exp Ther. 1992 Dec;263(3):1293–1301. [PubMed] [Google Scholar]
  43. Tare M., Parkington H. C., Coleman H. A., Neild T. O., Dusting G. J. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature. 1990 Jul 5;346(6279):69–71. doi: 10.1038/346069a0. [DOI] [PubMed] [Google Scholar]
  44. Tateishi J., Faber J. E. ATP-sensitive K+ channels mediate alpha 2D-adrenergic receptor contraction of arteriolar smooth muscle and reversal of contraction by hypoxia. Circ Res. 1995 Jan;76(1):53–63. doi: 10.1161/01.res.76.1.53. [DOI] [PubMed] [Google Scholar]
  45. Tateishi J., Faber J. E. Inhibition of arteriole alpha 2- but not alpha 1-adrenoceptor constriction by acidosis and hypoxia in vitro. Am J Physiol. 1995 May;268(5 Pt 2):H2068–H2076. doi: 10.1152/ajpheart.1995.268.5.H2068. [DOI] [PubMed] [Google Scholar]
  46. Thomas G. D., Hansen J., Victor R. G. Inhibition of alpha 2-adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. Am J Physiol. 1994 Mar;266(3 Pt 2):H920–H929. doi: 10.1152/ajpheart.1994.266.3.H920. [DOI] [PubMed] [Google Scholar]
  47. Timmermans P. B., Chiu A. T., Thoolen M. J. Calcium handling in vasoconstriction to stimulation of alpha 1- and alpha 2-adrenoceptors. Can J Physiol Pharmacol. 1987 Aug;65(8):1649–1657. doi: 10.1139/y87-259. [DOI] [PubMed] [Google Scholar]
  48. Vallet B., Curtis S. E., Guery B., Mangalaboyi J., Menager P., Cain S. M., Chopin C., Dupuis B. A. ATP-sensitive K+ channel blockade impairs O2 extraction during progressive ischemia in pig hindlimb. J Appl Physiol (1985) 1995 Dec;79(6):2035–2042. doi: 10.1152/jappl.1995.79.6.2035. [DOI] [PubMed] [Google Scholar]
  49. Vanelli G., Chang H. Y., Gatensby A. G., Hussain S. N. Contribution of potassium channels to active hyperemia of the canine diaphragm. J Appl Physiol (1985) 1994 Mar;76(3):1098–1105. doi: 10.1152/jappl.1994.76.3.1098. [DOI] [PubMed] [Google Scholar]
  50. Vanelli G., Hussain S. N. Effects of potassium channel blockers on basal vascular tone and reactive hyperemia of canine diaphragm. Am J Physiol. 1994 Jan;266(1 Pt 2):H43–H51. doi: 10.1152/ajpheart.1994.266.1.H43. [DOI] [PubMed] [Google Scholar]
  51. von Beckerath N., Cyrys S., Dischner A., Daut J. Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms. J Physiol. 1991 Oct;442:297–319. doi: 10.1113/jphysiol.1991.sp018794. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES