Abstract
EHNA (Erythro-9-[2-hydroxy-3-nonyl]adenine) is a wellknown inhibitor of adenosine deaminase. Recently, EHNA was shown to block the activity of purified soluble cGMPstimulated phosphodiesterase (PDE2) from frog, human, and porcine heart with an apparent Ki value of approximately 1 microM and with negligible effects on Ca2+/calmodulin PDE (PDE1), cGMP-inhibited PDE (PDE3), and low Km cAMP-specific PDE (PDE4) (Méry, P.F., C. Pavoine, F. Pecker, and R. Fischmeister. 1995. Mol. Pharmacol. 48:121-130; Podzuweit, T., P. Nennstiel, and A. Muller. 1995. Cell. Signalling. 7:733- 738). To investigate the role of PDE2 in the regulation of cardiac L-type Ca2+ current (ICa), we have examined the effect of EHNA on ICa in freshly isolated human atrial myocytes. Extracellular application of 0.1-10 microM EHNA induced an increase in the amplitude of basal ICa ( approximately 80% at 1 microM) without modification of the current-voltage or inactivation curves. The maximal stimulatory effect of EHNA on ICa was comparable in amplitude with the maximal effect of isoprenaline (1 microM), and the two effects were not additive. The effect of EHNA was not a result of adenosine deaminase inhibition, since 2'-deoxycoformycin (1-30 microM), another adenosine deaminase inhibitor with no effect on PDE2, or adenosine (1-10 microM) did not increase ICa. In the absence of intracellular GTP, the substrate of guanylyl cyclase, EHNA did not increase ICa. However, under similar conditions, intracellular perfusion with 0.5 microM cGMP produced an 80% increase in ICa. As opposed to human cardiomyocytes, EHNA (1-10 microM) did not modify ICa in isolated rat ventricular and atrial myocytes. We conclude that basal ICa is controlled by PDE2 activity in human atrial myocytes. Both PDE2 and PDE3 may contribute to keep the cyclic nucleotides concentrations at minimum in the absence of adenylyl and/or guanylyl cyclase stimulation.
Full Text
The Full Text of this article is available as a PDF (255.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balligand J. L., Kobzik L., Han X., Kaye D. M., Belhassen L., O'Hara D. S., Kelly R. A., Smith T. W., Michel T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem. 1995 Jun 16;270(24):14582–14586. doi: 10.1074/jbc.270.24.14582. [DOI] [PubMed] [Google Scholar]
- Beavo J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995 Oct;75(4):725–748. doi: 10.1152/physrev.1995.75.4.725. [DOI] [PubMed] [Google Scholar]
- Beavo J. A., Hardman J. G., Sutherland E. W. Stimulation of adenosine 3',5'-monophosphate hydrolysis by guanosine 3',5'-monophosphate. J Biol Chem. 1971 Jun 25;246(12):3841–3846. [PubMed] [Google Scholar]
- Conti M., Nemoz G., Sette C., Vicini E. Recent progress in understanding the hormonal regulation of phosphodiesterases. Endocr Rev. 1995 Jun;16(3):370–389. doi: 10.1210/edrv-16-3-370. [DOI] [PubMed] [Google Scholar]
- Fischmeister R., Hartzell H. C. Cyclic AMP phosphodiesterases and Ca2+ current regulation in cardiac cells. Life Sci. 1991;48(25):2365–2376. doi: 10.1016/0024-3205(91)90369-m. [DOI] [PubMed] [Google Scholar]
- Fischmeister R., Hartzell H. C. Cyclic guanosine 3',5'-monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol. 1987 Jun;387:453–472. doi: 10.1113/jphysiol.1987.sp016584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischmeister R., Hartzell H. C. Regulation of calcium current by low-Km cyclic AMP phosphodiesterases in cardiac cells. Mol Pharmacol. 1990 Sep;38(3):426–433. [PubMed] [Google Scholar]
- Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Han X., Kobzik L., Balligand J. L., Kelly R. A., Smith T. W. Nitric oxide synthase (NOS3)-mediated cholinergic modulation of Ca2+ current in adult rabbit atrioventricular nodal cells. Circ Res. 1996 Jun;78(6):998–1008. doi: 10.1161/01.res.78.6.998. [DOI] [PubMed] [Google Scholar]
- Han X., Shimoni Y., Giles W. R. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate. J Gen Physiol. 1995 Jul;106(1):45–65. doi: 10.1085/jgp.106.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han X., Shimoni Y., Giles W. R. An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol. 1994 Apr 15;476(2):309–314. doi: 10.1113/jphysiol.1994.sp020132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartzell H. C., Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature. 1986 Sep 18;323(6085):273–275. doi: 10.1038/323273a0. [DOI] [PubMed] [Google Scholar]
- Hartzell H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52(3):165–247. doi: 10.1016/0079-6107(88)90014-4. [DOI] [PubMed] [Google Scholar]
- Haynes J., Jr, Killilea D. W., Peterson P. D., Thompson W. J. Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic-3',5'-guanosine monophosphate-stimulated phosphodiesterase to reverse hypoxic pulmonary vasoconstriction in the perfused rat lung. J Pharmacol Exp Ther. 1996 Feb;276(2):752–757. [PubMed] [Google Scholar]
- Hove-Madsen L., Méry P. F., Jurevicius J., Skeberdis A. V., Fischmeister R. Regulation of myocardial calcium channels by cyclic AMP metabolism. Basic Res Cardiol. 1996;91 (Suppl 2):1–8. doi: 10.1007/BF00795355. [DOI] [PubMed] [Google Scholar]
- Jurevicius J., Fischmeister R. Acetylcholine inhibits Ca2+ current by acting exclusively at a site proximal to adenylyl cyclase in frog cardiac myocytes. J Physiol. 1996 Mar 15;491(Pt 3):669–675. doi: 10.1113/jphysiol.1996.sp021248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirstein M., Rivet-Bastide M., Hatem S., Bénardeau A., Mercadier J. J., Fischmeister R. Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest. 1995 Feb;95(2):794–802. doi: 10.1172/JCI117729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Grand B., Deroubaix E., Couétil J. P., Coraboeuf E. Effects of atrionatriuretic factor on Ca2+ current and Cai-independent transient outward K+ current in human atrial cells. Pflugers Arch. 1992 Aug;421(5):486–491. doi: 10.1007/BF00370260. [DOI] [PubMed] [Google Scholar]
- Levi R. C., Alloatti G., Fischmeister R. Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflugers Arch. 1989 Apr;413(6):685–687. doi: 10.1007/BF00581823. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
- Michie A. M., Lobban M., Müller T., Harnett M. M., Houslay M. D. Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram. Cell Signal. 1996 Feb;8(2):97–110. doi: 10.1016/0898-6568(95)02032-2. [DOI] [PubMed] [Google Scholar]
- Méry P. F., Hove-Madsen L., Chesnais J. M., Hartzell H. C., Fischmeister R. Nitric oxide synthase does not participate in negative inotropic effect of acetylcholine in frog heart. Am J Physiol. 1996 Apr;270(4 Pt 2):H1178–H1188. doi: 10.1152/ajpheart.1996.270.4.H1178. [DOI] [PubMed] [Google Scholar]
- Méry P. F., Lohmann S. M., Walter U., Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1197–1201. doi: 10.1073/pnas.88.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Méry P. F., Pavoine C., Belhassen L., Pecker F., Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem. 1993 Dec 15;268(35):26286–26295. [PubMed] [Google Scholar]
- Méry P. F., Pavoine C., Pecker F., Fischmeister R. Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharmacol. 1995 Jul;48(1):121–130. [PubMed] [Google Scholar]
- Ono K., Trautwein W. Potentiation by cyclic GMP of beta-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol. 1991 Nov;443:387–404. doi: 10.1113/jphysiol.1991.sp018839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pelzmann B., Schaffer P., Mächler H., Rigler B., Koidl B. Adenosine inhibits the L-type calcium current in human atrial myocytes. Naunyn Schmiedebergs Arch Pharmacol. 1995 Mar;351(3):293–297. doi: 10.1007/BF00233249. [DOI] [PubMed] [Google Scholar]
- Penningroth S. M. Erythro-9-[3-(2-hydroxynonyl)]adenine and vanadate as probes for microtubule-based cytoskeletal mechanochemistry. Methods Enzymol. 1986;134:477–487. doi: 10.1016/0076-6879(86)34114-4. [DOI] [PubMed] [Google Scholar]
- Perrella M. A., Schwab T. R., O'Murchu B., Redfield M. M., Wei C. M., Edwards B. S., Burnett J. C., Jr Cardiac atrial natriuretic factor during evolution of congestive heart failure. Am J Physiol. 1992 Apr;262(4 Pt 2):H1248–H1255. doi: 10.1152/ajpheart.1992.262.4.H1248. [DOI] [PubMed] [Google Scholar]
- Podzuweit T., Nennstiel P., Müller A. Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal. 1995 Sep;7(7):733–738. doi: 10.1016/0898-6568(95)00042-n. [DOI] [PubMed] [Google Scholar]
- Puceat M., Clement O., Lechene P., Pelosin J. M., Ventura-Clapier R., Vassort G. Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res. 1990 Aug;67(2):517–524. doi: 10.1161/01.res.67.2.517. [DOI] [PubMed] [Google Scholar]
- Rücker-Martin C., Hatem S., Dubus I., Mace L., Samuel J. L., Mercadier J. J. Behaviour of human atrial myocytes in culture is donor age dependent. Neuromuscul Disord. 1993 Sep-Nov;3(5-6):385–390. doi: 10.1016/0960-8966(93)90082-u. [DOI] [PubMed] [Google Scholar]
- Schaeffer H. J., Schwender C. F. Enzyme inhibitors. 26. Bridging hydrophobic and hydrophilic regions on adenosine deaminase with some 9-(2-hydroxy-3-alkyl)adenines. J Med Chem. 1974 Jan;17(1):6–8. doi: 10.1021/jm00247a002. [DOI] [PubMed] [Google Scholar]
- Schliwa M., Ezzell R. M., Euteneuer U. erythro-9-[3-(2-Hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6044–6048. doi: 10.1073/pnas.81.19.6044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrader W. P., West C. A. Localization of adenosine deaminase and adenosine deaminase complexing protein in rabbit heart. Implications for adenosine metabolism. Circ Res. 1990 Mar;66(3):754–762. doi: 10.1161/01.res.66.3.754. [DOI] [PubMed] [Google Scholar]
- Shirayama T., Pappano A. J. Biphasic effects of intrapipette cyclic guanosine monophosphate on L-type calcium current and contraction of guinea pig ventricular myocytes. J Pharmacol Exp Ther. 1996 Dec;279(3):1274–1281. [PubMed] [Google Scholar]
- Suttorp N., Hippenstiel S., Fuhrmann M., Krull M., Podzuweit T. Role of nitric oxide and phosphodiesterase isoenzyme II for reduction of endothelial hyperpermeability. Am J Physiol. 1996 Mar;270(3 Pt 1):C778–C785. doi: 10.1152/ajpcell.1996.270.3.C778. [DOI] [PubMed] [Google Scholar]
- Tremblay J., Gerzer R., Hamet P. Cyclic GMP in cell function. Adv Second Messenger Phosphoprotein Res. 1988;22:319–383. [PubMed] [Google Scholar]
- Wagner D. R., Bontemps F., van den Berghe G. Existence and role of substrate cycling between AMP and adenosine in isolated rabbit cardiomyocytes under control conditions and in ATP depletion. Circulation. 1994 Sep;90(3):1343–1349. doi: 10.1161/01.cir.90.3.1343. [DOI] [PubMed] [Google Scholar]
- Waldman S. A., Leitman D. C., Murad F. Immunoaffinity purification of soluble guanylyl cyclase. Methods Enzymol. 1991;195:391–396. doi: 10.1016/0076-6879(91)95185-m. [DOI] [PubMed] [Google Scholar]
- Winlaw D. S., Smythe G. A., Keogh A. M., Schyvens C. G., Spratt P. M., Macdonald P. S. Increased nitric oxide production in heart failure. Lancet. 1994 Aug 6;344(8919):373–374. doi: 10.1016/s0140-6736(94)91403-6. [DOI] [PubMed] [Google Scholar]
- Xia Y., Khatchikian G., Zweier J. L. Adenosine deaminase inhibition prevents free radical-mediated injury in the postischemic heart. J Biol Chem. 1996 Apr 26;271(17):10096–10102. doi: 10.1074/jbc.271.17.10096. [DOI] [PubMed] [Google Scholar]
- Zakharov S. I., Pieramici S., Kumar G. K., Prabhakar N. R., Harvey R. D. Nitric oxide synthase activity in guinea pig ventricular myocytes is not involved in muscarinic inhibition of cAMP-regulated ion channels. Circ Res. 1996 May;78(5):925–935. doi: 10.1161/01.res.78.5.925. [DOI] [PubMed] [Google Scholar]
- Zhu Q., Yang X., Claydon M. A., Hicks G. L., Jr, Wang T. Adenosine deaminase inhibitor in cardioplegia enhanced function preservation of the hypothermically stored rat heart. Transplantation. 1994 Jan;57(1):35–40. doi: 10.1097/00007890-199401000-00008. [DOI] [PubMed] [Google Scholar]
- de Belder A. J., Radomski M. W., Why H. J., Richardson P. J., Bucknall C. A., Salas E., Martin J. F., Moncada S. Nitric oxide synthase activities in human myocardium. Lancet. 1993 Jan 9;341(8837):84–85. doi: 10.1016/0140-6736(93)92559-c. [DOI] [PubMed] [Google Scholar]