Abstract
Monocyte-derived macrophages (Mphis) are pivotal participants in the pathogenesis of atherosclerosis. Evidence from both animal and human plaques indicates that local proliferation may contribute to accumulation of lesion Mphis, and the major Mphi growth factor, macrophage colony stimulating factor (MCSF), is present in atherosclerotic plaques. However, most in vitro studies have failed to demonstrate that human monocytes/Mphis possess significant proliferative capacity. We now report that, although human monocytes cultured in isolation showed only limited MCSF-induced proliferation, monocytes cocultured with aortic endothelial cells at identical MCSF concentrations underwent enhanced (up to 40-fold) and prolonged (21 d) proliferation. In contrast with monocytes in isolation, this was optimal at low seeding densities, required endothelial cell contact, and could not be reproduced by coculture with smooth muscle cells. Intimal Mphi isolated from human aortas likewise showed endothelial cell contact-dependent, MCSF-induced proliferation. Consistent with a two-signal mechanism governing Mphi proliferation, the cell cycle regulatory protein, cyclin E, was rapidly upregulated by endothelial cell contact in an MCSFindependent fashion, but MCSF was required for successful downregulation of the cell cycle inhibitory protein p27(Kip1) before cell cycling. Thus endothelial cells and MCSF differentially and synergistically regulate two Mphi genes critical for progression through the cell cycle.
Full Text
The Full Text of this article is available as a PDF (557.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antonov A. S., Nikolaeva M. A., Klueva T. S., Romanov YuA, Babaev V. R., Bystrevskaya V. B., Perov N. A., Repin V. S., Smirnov V. N. Primary culture of endothelial cells from atherosclerotic human aorta. Part 1. Identification, morphological and ultrastructural characteristics of two endothelial cell subpopulations. Atherosclerosis. 1986 Jan;59(1):1–19. doi: 10.1016/0021-9150(86)90027-4. [DOI] [PubMed] [Google Scholar]
- Averill L. E., Meagher R. C., Gerrity R. G. Enhanced monocyte progenitor cell proliferation in bone marrow of hyperlipemic swine. Am J Pathol. 1989 Aug;135(2):369–377. [PMC free article] [PubMed] [Google Scholar]
- Babaev V. R., Antonov A. S., Domogatsky S. P., Kazantseva I. A. Phenotype related changes of intimal smooth muscle cells from human aorta in primary culture. Atherosclerosis. 1992 Oct;96(2-3):189–202. doi: 10.1016/0021-9150(92)90065-o. [DOI] [PubMed] [Google Scholar]
- Babaev V. R., Antonov A. S., Zacharova O. S., Romanov Y. A., Krushinsky A. V., Tsibulsky V. P., Shirinsky V. P., Repin V. S., Smirnov V. N. Identification of intimal subendothelial cells from human aorta in primary culture. Atherosclerosis. 1988 May;71(1):45–56. doi: 10.1016/0021-9150(88)90301-2. [DOI] [PubMed] [Google Scholar]
- Berliner J. A., Territo M. C., Sevanian A., Ramin S., Kim J. A., Bamshad B., Esterson M., Fogelman A. M. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990 Apr;85(4):1260–1266. doi: 10.1172/JCI114562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bitterman P. B., Saltzman L. E., Adelberg S., Ferrans V. J., Crystal R. G. Alveolar macrophage replication. One mechanism for the expansion of the mononuclear phagocyte population in the chronically inflamed lung. J Clin Invest. 1984 Aug;74(2):460–469. doi: 10.1172/JCI111443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung D. L., Hamilton J. A. Regulation of human monocyte DNA synthesis by colony-stimulating factors, cytokines, and cyclic adenosine monophosphate. Blood. 1992 Apr 15;79(8):1972–1981. [PubMed] [Google Scholar]
- Clinton S. K., Libby P. Cytokines and growth factors in atherogenesis. Arch Pathol Lab Med. 1992 Dec;116(12):1292–1300. [PubMed] [Google Scholar]
- Clinton S. K., Underwood R., Hayes L., Sherman M. L., Kufe D. W., Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 1992 Feb;140(2):301–316. [PMC free article] [PubMed] [Google Scholar]
- Coats S., Flanagan W. M., Nourse J., Roberts J. M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science. 1996 May 10;272(5263):877–880. doi: 10.1126/science.272.5263.877. [DOI] [PubMed] [Google Scholar]
- Cushing S. D., Berliner J. A., Valente A. J., Territo M. C., Navab M., Parhami F., Gerrity R., Schwartz C. J., Fogelman A. M. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5134–5138. doi: 10.1073/pnas.87.13.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daoud A. S., Fritz K. E., Jarmolych J., Frank A. S. Role of macrophages in regression of atherosclerosis. Ann N Y Acad Sci. 1985;454:101–114. doi: 10.1111/j.1749-6632.1985.tb11848.x. [DOI] [PubMed] [Google Scholar]
- Daoud A. S., Jarmolych J., Augustyn J. M., Fritz K. E. Sequential morphologic studies of regression of advanced atherosclerosis. Arch Pathol Lab Med. 1981 May;105(5):233–239. [PubMed] [Google Scholar]
- Dulić V., Lees E., Reed S. I. Association of human cyclin E with a periodic G1-S phase protein kinase. Science. 1992 Sep 25;257(5078):1958–1961. doi: 10.1126/science.1329201. [DOI] [PubMed] [Google Scholar]
- Faggiotto A., Ross R., Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984 Jul-Aug;4(4):323–340. doi: 10.1161/01.atv.4.4.323. [DOI] [PubMed] [Google Scholar]
- Faggiotto A., Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984 Jul-Aug;4(4):341–356. doi: 10.1161/01.atv.4.4.341. [DOI] [PubMed] [Google Scholar]
- Farber H. W., Antonov A. S., Romanov Y. A., Smirnov V. N., Scarfo L. M., Beer D. J. Cytokine secretion by human aortic endothelial cells is related to degree of atherosclerosis. Am J Physiol. 1992 Apr;262(4 Pt 2):H1088–H1095. doi: 10.1152/ajpheart.1992.262.4.H1088. [DOI] [PubMed] [Google Scholar]
- Gerrity R. G., Goss J. A., Soby L. Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Arteriosclerosis. 1985 Jan-Feb;5(1):55–66. doi: 10.1161/01.atv.5.1.55. [DOI] [PubMed] [Google Scholar]
- Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
- Gerrity R. G. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am J Pathol. 1981 May;103(2):191–200. [PMC free article] [PubMed] [Google Scholar]
- Golde D. W., Byers L. A., Finley T. N. Proliferative capacity of human alveolar macrophage. Nature. 1974 Feb 8;247(5440):373–375. doi: 10.1038/247373a0. [DOI] [PubMed] [Google Scholar]
- Gordon D., Reidy M. A., Benditt E. P., Schwartz S. M. Cell proliferation in human coronary arteries. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4600–4604. doi: 10.1073/pnas.87.12.4600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon M. Y. Physiology and function of the haemopoietic microenvironment. Br J Haematol. 1994 Feb;86(2):241–243. doi: 10.1111/j.1365-2141.1994.tb04721.x. [DOI] [PubMed] [Google Scholar]
- Hocking W. G., Golde D. W. The pulmonary-alveolar macrophage (first of two parts). N Engl J Med. 1979 Sep 13;301(11):580–587. doi: 10.1056/NEJM197909133011104. [DOI] [PubMed] [Google Scholar]
- Inaba T., Shimano H., Gotoda T., Harada K., Shimada M., Kawamura M., Yazaki Y., Yamada N. Macrophage colony-stimulating factor regulates both activities of neutral and acidic cholesteryl ester hydrolases in human monocyte-derived macrophages. J Clin Invest. 1993 Aug;92(2):750–757. doi: 10.1172/JCI116646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishibashi S., Inaba T., Shimano H., Harada K., Inoue I., Mokuno H., Mori N., Gotoda T., Takaku F., Yamada N. Monocyte colony-stimulating factor enhances uptake and degradation of acetylated low density lipoproteins and cholesterol esterification in human monocyte-derived macrophages. J Biol Chem. 1990 Aug 25;265(24):14109–14117. [PubMed] [Google Scholar]
- Joris I., Zand T., Nunnari J. J., Krolikowski F. J., Majno G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol. 1983 Dec;113(3):341–358. [PMC free article] [PubMed] [Google Scholar]
- Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H., Cybulsky M. I., Gimbrone M. A., Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb. 1993 Feb;13(2):197–204. doi: 10.1161/01.atv.13.2.197. [DOI] [PubMed] [Google Scholar]
- Marczin N., Antonov A., Papapetropoulos A., Munn D. H., Virmani R., Kolodgie F. D., Gerrity R., Catravas J. D. Monocyte-induced downregulation of nitric oxide synthase in cultured aortic endothelial cells. Arterioscler Thromb Vasc Biol. 1996 Sep;16(9):1095–1103. doi: 10.1161/01.atv.16.9.1095. [DOI] [PubMed] [Google Scholar]
- Matsushime H., Roussel M. F., Ashmun R. A., Sherr C. J. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell. 1991 May 17;65(4):701–713. doi: 10.1016/0092-8674(91)90101-4. [DOI] [PubMed] [Google Scholar]
- Munn D. H., Armstrong E. Cytokine regulation of human monocyte differentiation in vitro: the tumor-cytotoxic phenotype induced by macrophage colony-stimulating factor is developmentally regulated by gamma-interferon. Cancer Res. 1993 Jun 1;53(11):2603–2613. [PubMed] [Google Scholar]
- Munn D. H., Beall A. C., Song D., Wrenn R. W., Throckmorton D. C. Activation-induced apoptosis in human macrophages: developmental regulation of a novel cell death pathway by macrophage colony-stimulating factor and interferon gamma. J Exp Med. 1995 Jan 1;181(1):127–136. doi: 10.1084/jem.181.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munn D. H., Pressey J., Beall A. C., Hudes R., Alderson M. R. Selective activation-induced apoptosis of peripheral T cells imposed by macrophages. A potential mechanism of antigen-specific peripheral lymphocyte deletion. J Immunol. 1996 Jan 15;156(2):523–532. [PubMed] [Google Scholar]
- Ohtsubo M., Theodoras A. M., Schumacher J., Roberts J. M., Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995 May;15(5):2612–2624. doi: 10.1128/mcb.15.5.2612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papapetropoulos A., Antonov A., Virmani R., Kolodgie F. D., Munn D. H., Marczin N., Ryan J. W., Gerrity R. G., Catravas J. D. Monocyte- and cytokine-induced downregulation of angiotensin-converting enzyme in cultured human and porcine endothelial cells. Circ Res. 1996 Sep;79(3):512–523. doi: 10.1161/01.res.79.3.512. [DOI] [PubMed] [Google Scholar]
- Penn M. S., Chisolm G. M. Oxidized lipoproteins, altered cell function and atherosclerosis. Atherosclerosis. 1994 Aug;108 (Suppl):S21–S29. doi: 10.1016/0021-9150(94)90150-3. [DOI] [PubMed] [Google Scholar]
- Pierce J. H., Di Marco E., Cox G. W., Lombardi D., Ruggiero M., Varesio L., Wang L. M., Choudhury G. G., Sakaguchi A. Y., Di Fiore P. P. Macrophage-colony-stimulating factor (CSF-1) induces proliferation, chemotaxis, and reversible monocytic differentiation in myeloid progenitor cells transfected with the human c-fms/CSF-1 receptor cDNA. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5613–5617. doi: 10.1073/pnas.87.15.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn M. T., Parthasarathy S., Fong L. G., Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987 May;84(9):2995–2998. doi: 10.1073/pnas.84.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajavashisth T. B., Andalibi A., Territo M. C., Berliner J. A., Navab M., Fogelman A. M., Lusis A. J. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990 Mar 15;344(6263):254–257. doi: 10.1038/344254a0. [DOI] [PubMed] [Google Scholar]
- Rekhter M. D., Gordon D. Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am J Pathol. 1995 Sep;147(3):668–677. [PMC free article] [PubMed] [Google Scholar]
- Romanov Y. A., Balyasnikova I. V., Bystrevskaya V. B., Byzova T. V., Ilyinskaya O. P., Krushinsky A. V., Latsis R. V., Soboleva E. L., Tararak E. M., Smirnov V. N. Endothelial heterogeneity and intimal blood-borne cells. Relation to human atherosclerosis. Ann N Y Acad Sci. 1995 Jan 17;748:12–39. doi: 10.1111/j.1749-6632.1994.tb17306.x. [DOI] [PubMed] [Google Scholar]
- Rosenfeld M. E., Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1990 Sep-Oct;10(5):680–687. doi: 10.1161/01.atv.10.5.680. [DOI] [PubMed] [Google Scholar]
- Rosenfeld M. E., Ylä-Herttuala S., Lipton B. A., Ord V. A., Witztum J. L., Steinberg D. Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am J Pathol. 1992 Feb;140(2):291–300. [PMC free article] [PubMed] [Google Scholar]
- Ross R., Masuda J., Raines E. W., Gown A. M., Katsuda S., Sasahara M., Malden L. T., Masuko H., Sato H. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science. 1990 May 25;248(4958):1009–1012. doi: 10.1126/science.2343305. [DOI] [PubMed] [Google Scholar]
- Ross R. Rous-Whipple Award Lecture. Atherosclerosis: a defense mechanism gone awry. Am J Pathol. 1993 Oct;143(4):987–1002. [PMC free article] [PubMed] [Google Scholar]
- Sherr C. J. Mammalian G1 cyclins. Cell. 1993 Jun 18;73(6):1059–1065. doi: 10.1016/0092-8674(93)90636-5. [DOI] [PubMed] [Google Scholar]
- Sherr C. J., Roberts J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995 May 15;9(10):1149–1163. doi: 10.1101/gad.9.10.1149. [DOI] [PubMed] [Google Scholar]
- Simionescu M., Simionescu N. Proatherosclerotic events: pathobiochemical changes occurring in the arterial wall before monocyte migration. FASEB J. 1993 Nov;7(14):1359–1366. doi: 10.1096/fasebj.7.14.8224609. [DOI] [PubMed] [Google Scholar]
- Smalley D. M., Lin J. H., Curtis M. L., Kobari Y., Stemerman M. B., Pritchard K. A., Jr Native LDL increases endothelial cell adhesiveness by inducing intercellular adhesion molecule-1. Arterioscler Thromb Vasc Biol. 1996 Apr;16(4):585–590. doi: 10.1161/01.atv.16.4.585. [DOI] [PubMed] [Google Scholar]
- Stary H. C. Coronary artery fine structure in rhesus monkeys: the early atherosclerotic lesion and its progression. Primates Med. 1976;9:359–395. [PubMed] [Google Scholar]
- Stein J., Borzillo G. V., Rettenmier C. W. Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood. 1990 Oct 1;76(7):1308–1314. [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Wong G. G., Temple P. A., Leary A. C., Witek-Giannotti J. S., Yang Y. C., Ciarletta A. B., Chung M., Murtha P., Kriz R., Kaufman R. J. Human CSF-1: molecular cloning and expression of 4-kb cDNA encoding the human urinary protein. Science. 1987 Mar 20;235(4795):1504–1508. doi: 10.1126/science.3493529. [DOI] [PubMed] [Google Scholar]
- de Villiers W. J., Fraser I. P., Hughes D. A., Doyle A. G., Gordon S. Macrophage-colony-stimulating factor selectively enhances macrophage scavenger receptor expression and function. J Exp Med. 1994 Aug 1;180(2):705–709. doi: 10.1084/jem.180.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Furth R., Raeburn J. A., van Zwet T. L. Characteristics of human mononuclear phagocytes. Blood. 1979 Aug;54(2):485–500. [PubMed] [Google Scholar]