Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 15;99(12):2877–2882. doi: 10.1172/JCI119481

Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with complex I deficiency.

X Luo 1, S Pitkänen 1, S Kassovska-Bratinova 1, B H Robinson 1, D C Lehotay 1
PMCID: PMC508138  PMID: 9185510

Abstract

Previous studies suggest oxygen free radicals' involvement in the etiology of cardiomyopathy with cataracts. To investigate the role of free radicals in the pathogenesis of the cardiomyopathy with cataracts and complex I deficiency, fibroblasts from patients were assessed for hydroxyl radical formation and aldehydic lipid peroxidation products with and without redox active agents that increase free radicals. The rate of hydroxyl radical formation in patient cells was increased over 2-10-fold under basal conditions, and up to 20-fold after menadione or doxorubicin treatment compared with normal cells. We also found an overproduction of aldehydes in patient cells both under basal conditions and after treatment. Both hydroxyl radicals and toxic aldehydes such as hexanal, 4-hydroxynon-2-enal, and malondialdehyde were elevated in cells from patients with three types of complex I deficiency. In contrast, acyloins, the less toxic conjugated products of pyruvate and saturated aldehydes, were lower in the patient cells. Our data provide direct evidence for the first time that complex I deficiency is associated with excessive production of hydroxyl radicals and lipid peroxidation. The resultant damage may contribute to the early onset of cardiomyopathy and cataracts and death in early infancy in affected patients with this disease.

Full Text

The Full Text of this article is available as a PDF (198.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alary J., Bravais F., Cravedi J. P., Debrauwer L., Rao D., Bories G. Mercapturic acid conjugates as urinary end metabolites of the lipid peroxidation product 4-hydroxy-2-nonenal in the rat. Chem Res Toxicol. 1995 Jan-Feb;8(1):34–39. doi: 10.1021/tx00043a004. [DOI] [PubMed] [Google Scholar]
  2. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhuyan D. K., Bhuyan K. C. Assessment of oxidative stress to eye in animal model for cataract. Methods Enzymol. 1994;233:630–639. doi: 10.1016/s0076-6879(94)33066-2. [DOI] [PubMed] [Google Scholar]
  4. Cheeseman K. H., Slater T. F. An introduction to free radical biochemistry. Br Med Bull. 1993 Jul;49(3):481–493. doi: 10.1093/oxfordjournals.bmb.a072625. [DOI] [PubMed] [Google Scholar]
  5. Cruysberg J. R., Sengers R. C., Pinckers A., Kubat K., van Haelst U. J. Features of a syndrome with congenital cataract and hypertrophic cardiomyopathy. Am J Ophthalmol. 1986 Dec 15;102(6):740–749. doi: 10.1016/0002-9394(86)90402-2. [DOI] [PubMed] [Google Scholar]
  6. Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  7. Esterbauer H., Zollner H. Methods for determination of aldehydic lipid peroxidation products. Free Radic Biol Med. 1989;7(2):197–203. doi: 10.1016/0891-5849(89)90015-4. [DOI] [PubMed] [Google Scholar]
  8. Flint D. H., Tuminello J. F., Emptage M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem. 1993 Oct 25;268(30):22369–22376. [PubMed] [Google Scholar]
  9. Frei B., Winterhalter K. H., Richter C. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria. Biochemistry. 1986 Jul 29;25(15):4438–4443. doi: 10.1021/bi00363a040. [DOI] [PubMed] [Google Scholar]
  10. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
  11. Fujii T., Ito M., Okuno T., Mutoh K., Nishikomori R., Mikawa H. Complex I (reduced nicotinamide-adenine dinucleotide-coenzyme Q reductase) deficiency in two patients with probable Leigh syndrome. J Pediatr. 1990 Jan;116(1):84–87. doi: 10.1016/s0022-3476(05)81650-6. [DOI] [PubMed] [Google Scholar]
  12. Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett. 1978 Aug 15;92(2):321–326. doi: 10.1016/0014-5793(78)80779-0. [DOI] [PubMed] [Google Scholar]
  13. Hammans S. R., Harding A. E. Mitochondrial disease and mitochondrial DNA. Br J Hosp Med. 1991 Jul;46(1):20, 22-3, 25-6. [PubMed] [Google Scholar]
  14. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
  15. Hennet T., Richter C., Peterhans E. Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem J. 1993 Jan 15;289(Pt 2):587–592. doi: 10.1042/bj2890587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  17. Ingelman-Sundberg M., Kaur H., Terelius Y., Persson J. O., Halliwell B. Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2,3-dihydroxybenzoate unless hydroxyl radical formation is permitted. Biochem J. 1991 Jun 15;276(Pt 3):753–757. doi: 10.1042/bj2760753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaur H., Halliwell B. Detection of hydroxyl radicals by aromatic hydroxylation. Methods Enzymol. 1994;233:67–82. doi: 10.1016/s0076-6879(94)33009-3. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Loidl-Stahlhofen A., Spiteller G. alpha-Hydroxyaldehydes, products of lipid peroxidation. Biochim Biophys Acta. 1994 Mar 3;1211(2):156–160. doi: 10.1016/0005-2760(94)90264-x. [DOI] [PubMed] [Google Scholar]
  21. Lown J. W. Anthracycline and anthraquinone anticancer agents: current status and recent developments. Pharmacol Ther. 1993 Nov;60(2):185–214. doi: 10.1016/0163-7258(93)90006-y. [DOI] [PubMed] [Google Scholar]
  22. Luo X. P., Yazdanpanah M., Bhooi N., Lehotay D. C. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal Biochem. 1995 Jul 1;228(2):294–298. doi: 10.1006/abio.1995.1353. [DOI] [PubMed] [Google Scholar]
  23. Luo X., Lehotay D. C. Determination of hydroxyl radicals using salicylate as a trapping agent by gas chromatography-mass spectrometry. Clin Biochem. 1997 Feb;30(1):41–46. doi: 10.1016/s0009-9120(96)00137-3. [DOI] [PubMed] [Google Scholar]
  24. Montgomery J. A., Des Rosiers C., Brunengraber H. Biosynthesis and characterization of 3-hydroxyalkan-2-ones and 2,3-alkanediols: potential products of aldehyde metabolism. Biol Mass Spectrom. 1992 May;21(5):242–248. doi: 10.1002/bms.1200210504. [DOI] [PubMed] [Google Scholar]
  25. Montgomery J. A., Jetté M., Huot S., Des Rosiers C. Acyloin production from aldehydes in the perfused rat heart: the potential role of pyruvate dehydrogenase. Biochem J. 1993 Sep 15;294(Pt 3):727–733. doi: 10.1042/bj2940727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moreadith R. W., Batshaw M. L., Ohnishi T., Kerr D., Knox B., Jackson D., Hruban R., Olson J., Reynafarje B., Lehninger A. L. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984 Sep;74(3):685–697. doi: 10.1172/JCI111484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Donnell V., Burkitt M. J. Mitochondrial metabolism of a hydroperoxide to free radicals in human endothelial cells: an electron spin resonance spin-trapping investigation. Biochem J. 1994 Dec 15;304(Pt 3):707–713. doi: 10.1042/bj3040707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pitkanen S., Merante F., McLeod D. R., Applegarth D., Tong T., Robinson B. H. Familial cardiomyopathy with cataracts and lactic acidosis: a defect in complex I (NADH-dehydrogenase) of the mitochondria respiratory chain. Pediatr Res. 1996 Mar;39(3):513–521. doi: 10.1203/00006450-199603000-00021. [DOI] [PubMed] [Google Scholar]
  29. Pitkanen S., Robinson B. H. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest. 1996 Jul 15;98(2):345–351. doi: 10.1172/JCI118798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pitkänen S., Feigenbaum A., Laframboise R., Robinson B. H. NADH-coenzyme Q reductase (complex I) deficiency: heterogeneity in phenotype and biochemical findings. J Inherit Metab Dis. 1996;19(5):675–686. doi: 10.1007/BF01799845. [DOI] [PubMed] [Google Scholar]
  31. Reed L. J. Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. Curr Top Cell Regul. 1981;18:95–106. doi: 10.1016/b978-0-12-152818-8.50012-8. [DOI] [PubMed] [Google Scholar]
  32. Richmond R., Halliwell B., Chauhan J., Darbre A. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds. Anal Biochem. 1981 Dec;118(2):328–335. doi: 10.1016/0003-2697(81)90590-x. [DOI] [PubMed] [Google Scholar]
  33. Richter C. Reactive oxygen and DNA damage in mitochondria. Mutat Res. 1992 Sep;275(3-6):249–255. doi: 10.1016/0921-8734(92)90029-o. [DOI] [PubMed] [Google Scholar]
  34. Robinson B. H., Glerum D. M., Chow W., Petrova-Benedict R., Lightowlers R., Capaldi R. The use of skin fibroblast cultures in the detection of respiratory chain defects in patients with lacticacidemia. Pediatr Res. 1990 Nov;28(5):549–555. doi: 10.1203/00006450-199011000-00027. [DOI] [PubMed] [Google Scholar]
  35. Robinson B. H. Lacticacidemia. Biochim Biophys Acta. 1993 Oct 20;1182(3):231–244. doi: 10.1016/0925-4439(93)90064-8. [DOI] [PubMed] [Google Scholar]
  36. Robinson B. H., McKay N., Goodyer P., Lancaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacticacidemia. Am J Hum Genet. 1985 Sep;37(5):938–946. [PMC free article] [PubMed] [Google Scholar]
  37. Salganik R. I., Solovyova N. A., Dikalov S. I., Grishaeva O. N., Semenova L. A., Popovsky A. V. Inherited enhancement of hydroxyl radical generation and lipid peroxidation in the S strain rats results in DNA rearrangements, degenerative diseases, and premature aging. Biochem Biophys Res Commun. 1994 Mar 15;199(2):726–733. doi: 10.1006/bbrc.1994.1289. [DOI] [PubMed] [Google Scholar]
  38. Sanders S. P., Zweier J. L., Kuppusamy P., Harrison S. J., Bassett D. J., Gabrielson E. W., Sylvester J. T. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport. J Clin Invest. 1993 Jan;91(1):46–52. doi: 10.1172/JCI116198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sengers R. C., Stadhouders A. M., van Lakwijk-Vondrovicova E., Kubat K., Ruitenbeek W. Hypertrophic cardiomyopathy associated with a mitochondrial myopathy of voluntary muscles and congenital cataract. Br Heart J. 1985 Nov;54(5):543–547. doi: 10.1136/hrt.54.5.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sengers R. C., Trijbels J. M., Willems J. L., Daniels O., Stadhouders A. M. Congenital cataract and mitochondrial myopathy of skeletal and heart muscle associated with lactic acidosis after exercise. J Pediatr. 1975 Jun;86(6):873–880. doi: 10.1016/s0022-3476(75)80217-4. [DOI] [PubMed] [Google Scholar]
  41. Shull S., Heintz N. H., Periasamy M., Manohar M., Janssen Y. M., Marsh J. P., Mossman B. T. Differential regulation of antioxidant enzymes in response to oxidants. J Biol Chem. 1991 Dec 25;266(36):24398–24403. [PubMed] [Google Scholar]
  42. Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991 Sep 30;91(3C):31S–38S. doi: 10.1016/0002-9343(91)90281-2. [DOI] [PubMed] [Google Scholar]
  43. Toyokuni S., Uchida K., Okamoto K., Hattori-Nakakuki Y., Hiai H., Stadtman E. R. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2616–2620. doi: 10.1073/pnas.91.7.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Turrens J. F., Freeman B. A., Levitt J. G., Crapo J. D. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys. 1982 Sep;217(2):401–410. doi: 10.1016/0003-9861(82)90518-5. [DOI] [PubMed] [Google Scholar]
  46. Valsson J., Laxdal T., Jonsson A., Jansson K. K., Helgason H. Congenital cardiomyopathy and cataracts with lactic acidosis. Am J Cardiol. 1988 Jan 1;61(1):193–194. doi: 10.1016/0002-9149(88)91331-8. [DOI] [PubMed] [Google Scholar]
  47. Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
  48. Weiss H., Friedrich T., Hofhaus G., Preis D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem. 1991 May 8;197(3):563–576. doi: 10.1111/j.1432-1033.1991.tb15945.x. [DOI] [PubMed] [Google Scholar]
  49. Witz G. Biological interactions of alpha,beta-unsaturated aldehydes. Free Radic Biol Med. 1989;7(3):333–349. doi: 10.1016/0891-5849(89)90137-8. [DOI] [PubMed] [Google Scholar]
  50. Yamazaki I., Piette L. H. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. J Biol Chem. 1990 Aug 15;265(23):13589–13594. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES