Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 15;99(12):2890–2897. doi: 10.1172/JCI119483

Cytosolic Ca2+ and protein kinase Calpha couple cellular metabolism to membrane K+ permeability in a human biliary cell line.

Y Wang 1, R Roman 1, T Schlenker 1, Y A Hannun 1, J Raymond 1, J G Fitz 1
PMCID: PMC508140  PMID: 9185512

Abstract

Cholangiocytes represent an important target of injury during the ischemia and metabolic stress that accompanies liver preservation. Since K+ efflux serves to minimize injury during ATP depletion in certain other cell types, the purpose of these studies was to evaluate the effects of ATP depletion on plasma membrane K+ permeability of Mz-ChA-1 cells, a model human biliary cell line. Cells were exposed to dinitrophenol (50 microM) and 2-deoxyglucose (10 mM) as the standard model of metabolic injury. Whole-cell and single K+ channel currents were measured using patch clamp techniques; and intracellular [Ca2+] ([Ca2+]i) was estimated by calcium green-1 fluorescence. Metabolic stress increased [Ca2+]i, and stimulated translocation of the alpha isoform of protein kinase C (PKCalpha) from cytosolic to particulate cell fractions. The same maneuver increased membrane K+ permeability 40-70-fold as detected by (a) activation of K+selective whole cell currents of 2,176+/-218 pA (n = 34), and (b) opening of apamin-sensitive K+ channels with a unitary conductance of 17.0+/-0.2 pS. PKCalpha translocation and channel opening appear to be related since stress-induced K+ efflux is inhibited by chelation of cytosolic Ca2+, exposure to the PKC inhibitor chelerythrine (25 microM) and downregulation of PKC by phorbol esters. Moreover, K+ currents were activated by intracellular perfusion with recombinant PKCalpha in the absence of metabolic inhibitors. These findings indicate that in biliary cells apamin-sensitive K+ channels are functionally coupled to cell metabolism and suggest that cytosolic Ca2+ and PKCalpha are selectively involved in the response.

Full Text

The Full Text of this article is available as a PDF (321.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basavappa S., Middleton J., Mangel A. W., McGill J. M., Cohn J. A., Fitz J. G. Cl- and K+ transport in human biliary cell lines. Gastroenterology. 1993 Jun;104(6):1796–1805. doi: 10.1016/0016-5085(93)90661-u. [DOI] [PubMed] [Google Scholar]
  2. Campion J. P., Porchet N., Aubert J. P., L'Helgoualc'h A., Clément B. UW-preservation of cultured human gallbladder epithelial cells: phenotypic alterations and differential mucin gene expression in the presence of bile. Hepatology. 1995 Jan;21(1):223–231. [PubMed] [Google Scholar]
  3. Chang D., Hsieh P. S., Dawson D. C. Calcium: a program in BASIC for calculating the composition of solutions with specified free concentrations of calcium, magnesium and other divalent cations. Comput Biol Med. 1988;18(5):351–366. doi: 10.1016/0010-4825(88)90022-4. [DOI] [PubMed] [Google Scholar]
  4. Colonna J. O., 2nd, Shaked A., Gomes A. S., Colquhoun S. D., Jurim O., McDiarmid S. V., Millis J. M., Goldstein L. I., Busuttil R. W. Biliary strictures complicating liver transplantation. Incidence, pathogenesis, management, and outcome. Ann Surg. 1992 Sep;216(3):344–352. doi: 10.1097/00000658-199209000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dengler W. A., Schulte J., Berger D. P., Mertelsmann R., Fiebig H. H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs. 1995 Aug;6(4):522–532. doi: 10.1097/00001813-199508000-00005. [DOI] [PubMed] [Google Scholar]
  6. Fitz J. G., Sostman A. H., Middleton J. P. Regulation of cation channels in liver cells by intracellular calcium and protein kinase C. Am J Physiol. 1994 Apr;266(4 Pt 1):G677–G684. doi: 10.1152/ajpgi.1994.266.4.G677. [DOI] [PubMed] [Google Scholar]
  7. Fitz J. G., Sostman A. H. Nucleotide receptors activate cation, potassium, and chloride currents in a liver cell line. Am J Physiol. 1994 Apr;266(4 Pt 1):G544–G553. doi: 10.1152/ajpgi.1994.266.4.G544. [DOI] [PubMed] [Google Scholar]
  8. Gasbarrini A., Borle A. B., Farghali H., Bender C., Francavilla A., Van Thiel D. Effect of anoxia on intracellular ATP, Na+i, Ca2+i, Mg2+i, and cytotoxicity in rat hepatocytes. J Biol Chem. 1992 Apr 5;267(10):6654–6663. [PubMed] [Google Scholar]
  9. Gettys T. W., Sheriff-Carter K., Moomaw J., Taylor I. L., Raymond J. R. Characterization and use of crude alpha-subunit preparations for quantitative immunoblotting of G proteins. Anal Biochem. 1994 Jul;220(1):82–91. doi: 10.1006/abio.1994.1302. [DOI] [PubMed] [Google Scholar]
  10. Groschner K., Silberberg S. D., Gelband C. H., van Breemen C. Ca2(+)-activated K+ channels in airway smooth muscle are inhibited by cytoplasmic adenosine triphosphate. Pflugers Arch. 1991 Jan;417(5):517–522. doi: 10.1007/BF00370948. [DOI] [PubMed] [Google Scholar]
  11. Hallbrucker C., Ritter M., Lang F., Gerok W., Häussinger D. Hydroperoxide metabolism in rat liver. K+ channel activation, cell volume changes and eicosanoid formation. Eur J Biochem. 1993 Feb 1;211(3):449–458. doi: 10.1111/j.1432-1033.1993.tb17570.x. [DOI] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Herbert J. M., Augereau J. M., Gleye J., Maffrand J. P. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990 Nov 15;172(3):993–999. doi: 10.1016/0006-291x(90)91544-3. [DOI] [PubMed] [Google Scholar]
  14. Hertl M., Harvey P. R., Swanson P. E., West D. D., Howard T. K., Shenoy S., Strasberg S. M. Evidence of preservation injury to bile ducts by bile salts in the pig and its prevention by infusions of hydrophilic bile salts. Hepatology. 1995 Apr;21(4):1130–1137. [PubMed] [Google Scholar]
  15. Kazanietz M. G., Areces L. B., Bahador A., Mischak H., Goodnight J., Mushinski J. F., Blumberg P. M. Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol Pharmacol. 1993 Aug;44(2):298–307. [PubMed] [Google Scholar]
  16. Kehrer J. P., Jones D. P., Lemasters J. J., Farber J. L., Jaeschke H. Mechanisms of hypoxic cell injury. Summary of the symposium presented at the 1990 annual meeting of the Society of Toxicology. Toxicol Appl Pharmacol. 1990 Nov;106(2):165–178. doi: 10.1016/0041-008x(90)90238-p. [DOI] [PubMed] [Google Scholar]
  17. Knuth A., Gabbert H., Dippold W., Klein O., Sachsse W., Bitter-Suermann D., Prellwitz W., Meyer zum Büschenfelde K. H. Biliary adenocarcinoma. Characterisation of three new human tumor cell lines. J Hepatol. 1985;1(6):579–596. doi: 10.1016/s0168-8278(85)80002-7. [DOI] [PubMed] [Google Scholar]
  18. Komaru T., Lamping K. G., Eastham C. L., Dellsperger K. C. Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses. Circ Res. 1991 Oct;69(4):1146–1151. doi: 10.1161/01.res.69.4.1146. [DOI] [PubMed] [Google Scholar]
  19. Lidofsky S. D., Xie M. H., Sostman A., Scharschmidt B. F., Fitz J. G. Vasopressin increases cytosolic sodium concentration in hepatocytes and activates calcium influx through cation-selective channels. J Biol Chem. 1993 Jul 15;268(20):14632–14636. [PubMed] [Google Scholar]
  20. McGill J. M., Basavappa S., Mangel A. W., Shimokura G. H., Middleton J. P., Fitz J. G. Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology. 1994 Jul;107(1):236–243. doi: 10.1016/0016-5085(94)90082-5. [DOI] [PubMed] [Google Scholar]
  21. Mets B., Hickman R., Allin R., Van Dyk J., Lotz Z. Effect of hypoxia on the hepatic metabolism of lidocaine in the isolated perfused pig liver. Hepatology. 1993 Apr;17(4):668–676. doi: 10.1002/hep.1840170422. [DOI] [PubMed] [Google Scholar]
  22. Miller A. L., Morales E., Leblanc N. R., Cole W. C. Metabolic inhibition enhances Ca(2+)-activated K+ current in smooth muscle cells of rabbit portal vein. Am J Physiol. 1993 Dec;265(6 Pt 2):H2184–H2195. doi: 10.1152/ajpheart.1993.265.6.H2184. [DOI] [PubMed] [Google Scholar]
  23. Nathanson M. H., Boyer J. L. Mechanisms and regulation of bile secretion. Hepatology. 1991 Sep;14(3):551–566. [PubMed] [Google Scholar]
  24. Nichols C. G., Lederer W. J. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991 Dec;261(6 Pt 2):H1675–H1686. doi: 10.1152/ajpheart.1991.261.6.H1675. [DOI] [PubMed] [Google Scholar]
  25. Roman R. M., Wang Y., Fitz J. G. Regulation of cell volume in a human biliary cell line: activation of K+ and Cl- currents. Am J Physiol. 1996 Aug;271(2 Pt 1):G239–G248. doi: 10.1152/ajpgi.1996.271.2.G239. [DOI] [PubMed] [Google Scholar]
  26. Rosser B. G., Gores G. J. Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology. 1995 Jan;108(1):252–275. doi: 10.1016/0016-5085(95)90032-2. [DOI] [PubMed] [Google Scholar]
  27. Silberberg S. D., van Breemen C. A potassium current activated by lemakalim and metabolic inhibition in rabbit mesenteric artery. Pflugers Arch. 1992 Jan;420(1):118–120. doi: 10.1007/BF00378653. [DOI] [PubMed] [Google Scholar]
  28. Stabel S., Schaap D., Parker P. J. Expression of protein kinase C isotypes using baculovirus vectors. Methods Enzymol. 1991;200:670–673. doi: 10.1016/0076-6879(91)00179-z. [DOI] [PubMed] [Google Scholar]
  29. Tohkin M., Yoshimatsu N., Matsubara T. Comparison of the action of epinephrine and a respiratory chain uncoupler, 2,4-dinitrophenol, on Ca2+-mobilization in isolated hepatocytes and perfused livers. Jpn J Pharmacol. 1988 Jan;46(1):61–69. doi: 10.1254/jjp.46.61. [DOI] [PubMed] [Google Scholar]
  30. Wang Y., Sostman A., Roman R., Stribling S., Vigna S., Hannun Y., Raymond J., Fitz J. G. Metabolic stress opens K+ channels in hepatoma cells through a Ca2+- and protein kinase calpha-dependent mechanism. J Biol Chem. 1996 Jul 26;271(30):18107–18113. doi: 10.1074/jbc.271.30.18107. [DOI] [PubMed] [Google Scholar]
  31. Wetsel W. C., Khan W. A., Merchenthaler I., Rivera H., Halpern A. E., Phung H. M., Negro-Vilar A., Hannun Y. A. Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol. 1992 Apr;117(1):121–133. doi: 10.1083/jcb.117.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Worrell R. T., Frizzell R. A. CaMKII mediates stimulation of chloride conductance by calcium in T84 cells. Am J Physiol. 1991 Apr;260(4 Pt 1):C877–C882. doi: 10.1152/ajpcell.1991.260.4.C877. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES