Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 15;99(12):2906–2914. doi: 10.1172/JCI119485

Regulation of the rat liver sodium-dependent bile acid cotransporter gene by prolactin. Mediation of transcriptional activation by Stat5.

T C Ganguly 1, M L O'Brien 1, S J Karpen 1, J F Hyde 1, F J Suchy 1, M Vore 1
PMCID: PMC508142  PMID: 9185514

Abstract

The intracellular mechanism(s) underlying the upregulation of the hepatic Na+/taurocholate cotransporting polypeptide (ntcp) by prolactin (PRL) are unknown. In this report, we demonstrate a time-dependent increase in nuclear translocation of phosphorylated liver Stat5 (a member of the ignal ransducers and ctivators of ranscription family) that correlated with suckling-induced increases in serum PRL levels. In electrophoretic mobility gel shift assays, nuclear Stat5 exhibited specific DNA-binding ability towards IFN-gamma-activated sequence (GAS)-like elements (GLEs; 5'TTC/A-PyNPu-G/TAA-3') located in the -937 to -904 bp region of the ntcp promoter. Transient cotransfections in HepG2 cells revealed that PRL inducibility (2.5-3-fold) required coexpression of the long form of the PRL receptor (PRLRL) and Stat5. Deletion analysis mapped the PRLinducible region to -1237 to -758 bp of the ntcp promoter. Linking this 0.5-kb region to a heterologous thymidine kinase (tk) promoter, or linking multimerized ntcp GLEs either upstream of the ntcp minimal promoter (-158 to +47 bp) or the heterologous promoter conferred dose-dependent PRL responsiveness. The short form of the PRL receptor failed to transactivate ntcp GLEs. These results indicate that PRL acts via the PRLRL to facilitate Stat5 binding to ntcp-GLEs and to transcriptionally regulate ntcp.

Full Text

The Full Text of this article is available as a PDF (313.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazan J. F. A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain. Biochem Biophys Res Commun. 1989 Oct 31;164(2):788–795. doi: 10.1016/0006-291x(89)91528-3. [DOI] [PubMed] [Google Scholar]
  2. Boutin J. M., Jolicoeur C., Okamura H., Gagnon J., Edery M., Shirota M., Banville D., Dusanter-Fourt I., Djiane J., Kelly P. A. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell. 1988 Apr 8;53(1):69–77. doi: 10.1016/0092-8674(88)90488-6. [DOI] [PubMed] [Google Scholar]
  3. Boyer J. L., Ng O. C., Ananthanarayanan M., Hofmann A. F., Schteingart C. D., Hagenbuch B., Stieger B., Meier P. J. Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS-7 cells. Am J Physiol. 1994 Mar;266(3 Pt 1):G382–G387. doi: 10.1152/ajpgi.1994.266.3.G382. [DOI] [PubMed] [Google Scholar]
  4. Campbell G. S., Argetsinger L. S., Ihle J. N., Kelly P. A., Rillema J. A., Carter-Su C. Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5232–5236. doi: 10.1073/pnas.91.12.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cosman D. The hematopoietin receptor superfamily. Cytokine. 1993 Mar;5(2):95–106. doi: 10.1016/1043-4666(93)90047-9. [DOI] [PubMed] [Google Scholar]
  6. DaSilva L., Rui H., Erwin R. A., Howard O. M., Kirken R. A., Malabarba M. G., Hackett R. H., Larner A. C., Farrar W. L. Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol. 1996 Mar 25;117(2):131–140. doi: 10.1016/0303-7207(95)03738-1. [DOI] [PubMed] [Google Scholar]
  7. Gala R. R. Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med. 1991 Oct;198(1):513–527. doi: 10.3181/00379727-198-43286b. [DOI] [PubMed] [Google Scholar]
  8. Galsgaard E. D., Gouilleux F., Groner B., Serup P., Nielsen J. H., Billestrup N. Identification of a growth hormone-responsive STAT5-binding element in the rat insulin 1 gene. Mol Endocrinol. 1996 Jun;10(6):652–660. doi: 10.1210/mend.10.6.8776725. [DOI] [PubMed] [Google Scholar]
  9. Ganguly T. C., Liu Y., Hyde J. F., Hagenbuch B., Meier P. J., Vore M. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum. Biochem J. 1994 Oct 1;303(Pt 1):33–36. doi: 10.1042/bj3030033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ganguly T., Hyde J. F., Vore M. Prolactin increases Na+/taurocholate cotransport in isolated hepatocytes from postpartum rats and ovariectomized rats. J Pharmacol Exp Ther. 1993 Oct;267(1):82–87. [PubMed] [Google Scholar]
  11. Gouilleux F., Pallard C., Dusanter-Fourt I., Wakao H., Haldosen L. A., Norstedt G., Levy D., Groner B. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J. 1995 May 1;14(9):2005–2013. doi: 10.1002/j.1460-2075.1995.tb07192.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gouilleux F., Wakao H., Mundt M., Groner B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 1994 Sep 15;13(18):4361–4369. doi: 10.1002/j.1460-2075.1994.tb06756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Groner B., Gouilleux F. Prolactin-mediated gene activation in mammary epithelial cells. Curr Opin Genet Dev. 1995 Oct;5(5):587–594. doi: 10.1016/0959-437x(95)80027-1. [DOI] [PubMed] [Google Scholar]
  14. Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herington A. C., Phillips L. S., Daughaday W. H. Pituitary regulation of human growth hormone binding sites in rat liver membranes. Metabolism. 1976 Mar;25(3):341–353. doi: 10.1016/0026-0495(76)90092-5. [DOI] [PubMed] [Google Scholar]
  16. Hooghe R., Delhase M., Vergani P., Malur A., Hooghe-Peters E. L. Growth hormone and prolactin are paracrine growth and differentiation factors in the haemopoietic system. Immunol Today. 1993 May;14(5):212–214. doi: 10.1016/0167-5699(93)90165-h. [DOI] [PubMed] [Google Scholar]
  17. Horseman N. D., Yu-Lee L. Y. Transcriptional regulation by the helix bundle peptide hormones: growth hormone, prolactin, and hematopoietic cytokines. Endocr Rev. 1994 Oct;15(5):627–649. doi: 10.1210/edrv-15-5-627. [DOI] [PubMed] [Google Scholar]
  18. Jahn G. A., Edery M., Belair L., Kelly P. A., Djiane J. Prolactin receptor gene expression in rat mammary gland and liver during pregnancy and lactation. Endocrinology. 1991 Jun;128(6):2976–2984. doi: 10.1210/endo-128-6-2976. [DOI] [PubMed] [Google Scholar]
  19. Karpen S. J., Sun A. Q., Kudish B., Hagenbuch B., Meier P. J., Ananthanarayanan M., Suchy F. J. Multiple factors regulate the rat liver basolateral sodium-dependent bile acid cotransporter gene promoter. J Biol Chem. 1996 Jun 21;271(25):15211–15221. doi: 10.1074/jbc.271.25.15211. [DOI] [PubMed] [Google Scholar]
  20. Kelly P. A., Djiane J., Postel-Vinay M. C., Edery M. The prolactin/growth hormone receptor family. Endocr Rev. 1991 Aug;12(3):235–251. doi: 10.1210/edrv-12-3-235. [DOI] [PubMed] [Google Scholar]
  21. Kelly P. A., Posner B. I., Friesen H. G. Effects of hypophysectomy, ovariectomy, and cycloheximide on specific binding sites for lactogenic hormones in rat liver. Endocrinology. 1975 Dec;97(6):1408–1415. doi: 10.1210/endo-97-6-1408. [DOI] [PubMed] [Google Scholar]
  22. Kordula T., Ripperger J., Morella K. M., Travis J., Baumann H. Two separate signal transducer and activator of transcription proteins regulate transcription of the serine proteinase inhibitor-3 gene in hepatic cells. J Biol Chem. 1996 Mar 22;271(12):6752–6757. doi: 10.1074/jbc.271.12.6752. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lebrun J. J., Ali S., Goffin V., Ullrich A., Kelly P. A. A single phosphotyrosine residue of the prolactin receptor is responsible for activation of gene transcription. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4031–4035. doi: 10.1073/pnas.92.9.4031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lebrun J. J., Ali S., Sofer L., Ullrich A., Kelly P. A. Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J Biol Chem. 1994 May 13;269(19):14021–14026. [PubMed] [Google Scholar]
  26. Lebrun J. J., Ali S., Ullrich A., Kelly P. A. Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J Biol Chem. 1995 May 5;270(18):10664–10670. doi: 10.1074/jbc.270.18.10664. [DOI] [PubMed] [Google Scholar]
  27. Lesueur L., Edery M., Ali S., Paly J., Kelly P. A., Djiane J. Comparison of long and short forms of the prolactin receptor on prolactin-induced milk protein gene transcription. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):824–828. doi: 10.1073/pnas.88.3.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liu Y., Ganguly T., Hyde J. F., Vore M. Prolactin increases mRNA encoding Na(+)-TC cotransport polypeptide and hepatic Na(+)-TC cotransport. Am J Physiol. 1995 Jan;268(1 Pt 1):G11–G17. doi: 10.1152/ajpgi.1995.268.1.G11. [DOI] [PubMed] [Google Scholar]
  29. Liu Y., Hyde J. F., Vore M. Prolactin regulates maternal bile secretory function post partum. J Pharmacol Exp Ther. 1992 May;261(2):560–566. [PubMed] [Google Scholar]
  30. Liu Y., Suchy F. J., Silverman J. A., Vore M. Prolactin increases ATP-dependent taurocholate transport in canalicular plasma membrane from rat liver. Am J Physiol. 1997 Jan;272(1 Pt 1):G46–G53. doi: 10.1152/ajpgi.1997.272.1.G46. [DOI] [PubMed] [Google Scholar]
  31. Murakami M., Narazaki M., Hibi M., Yawata H., Yasukawa K., Hamaguchi M., Taga T., Kishimoto T. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11349–11353. doi: 10.1073/pnas.88.24.11349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nathanson M. H., Boyer J. L. Mechanisms and regulation of bile secretion. Hepatology. 1991 Sep;14(3):551–566. [PubMed] [Google Scholar]
  33. O'Brien M. L., Rangwala S. M., Henry K. W., Weinberger C., Crick D. C., Waechter C. J., Feller D. R., Noonan D. J. Convergence of three steroid receptor pathways in the mediation of nongenotoxic hepatocarcinogenesis. Carcinogenesis. 1996 Feb;17(2):185–190. doi: 10.1093/carcin/17.2.185. [DOI] [PubMed] [Google Scholar]
  34. Ram P. A., Park S. H., Choi H. K., Waxman D. J. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem. 1996 Mar 8;271(10):5929–5940. doi: 10.1074/jbc.271.10.5929. [DOI] [PubMed] [Google Scholar]
  35. Ripperger J. A., Fritz S., Richter K., Hocke G. M., Lottspeich F., Fey G. H. Transcription factors Stat3 and Stat5b are present in rat liver nuclei late in an acute phase response and bind interleukin-6 response elements. J Biol Chem. 1995 Dec 15;270(50):29998–30006. doi: 10.1074/jbc.270.50.29998. [DOI] [PubMed] [Google Scholar]
  36. Rui H., Kirken R. A., Farrar W. L. Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem. 1994 Feb 18;269(7):5364–5368. [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shirota M., Banville D., Ali S., Jolicoeur C., Boutin J. M., Edery M., Djiane J., Kelly P. A. Expression of two forms of prolactin receptor in rat ovary and liver. Mol Endocrinol. 1990 Aug;4(8):1136–1143. doi: 10.1210/mend-4-8-1136. [DOI] [PubMed] [Google Scholar]
  39. Standke G. J., Meier V. S., Groner B. Mammary gland factor activated by prolactin on mammary epithelial cells and acute-phase response factor activated by interleukin-6 in liver cells share DNA binding and transactivation potential. Mol Endocrinol. 1994 Apr;8(4):469–477. doi: 10.1210/mend.8.4.7519723. [DOI] [PubMed] [Google Scholar]
  40. Wakao H., Gouilleux F., Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994 May 1;13(9):2182–2191. doi: 10.1002/j.1460-2075.1994.tb06495.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Waters M. J., Daniel N., Bignon C., Djiane J. The rabbit mammary gland prolactin receptor is tyrosine-phosphorylated in response to prolactin in vivo and in vitro. J Biol Chem. 1995 Mar 10;270(10):5136–5143. doi: 10.1074/jbc.270.10.5136. [DOI] [PubMed] [Google Scholar]
  42. Xu X., Sun Y. L., Hoey T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science. 1996 Aug 9;273(5276):794–797. doi: 10.1126/science.273.5276.794. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES