Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 15;99(12):2915–2922. doi: 10.1172/JCI119486

Leukotriene D4 activates a chloride conductance in hepatocytes from lipopolysaccharide-treated rats.

X J Meng 1, M W Carruth 1, S A Weinman 1
PMCID: PMC508143  PMID: 9185515

Abstract

Endotoxin (LPS) can cause hepatocellular injury under several circumstances, and leukotrienes have been implicated as a contributing factor. Since ion channel activation has been associated with cytotoxicity, the aim of this study was to determine the circumstances under which LPS and/or leukotrienes activate ionic conductances in hepatocytes. LPS treatment of rats increased Cl- conductance in hepatocytes from 232+/-42 to 1236+/-134 pS/pF. Voltage dependence and inhibitor specificity of this conductance were similar to that of a swelling-activated Cl- conductance, and internal dialysis with nucleoside analogues suggested control by an inhibitory G protein. The lipoxygenase inhibitor nordihydroguaiaretic acid, the specific leukotriene D4 (LTD4) receptor antagonist MK-571, and the 5-lipoxygenase activating protein inhibitor MK-886 all significantly inhibited the conductance. Intracellular dialysis with LTD4 (1.5 microM) elevated intracellular Ca2+ from 143+/-6.5 to 388+/-114 nM within 6 min and stimulated an outwardly rectifying conductance from 642+/-159 to 1669+/-224 pS/pF (n = 9, P < 0.001). In hepatocytes prepared from untreated rats, this concentration of intracellular LTD4 neither raised intracellular Ca2+ nor activated the conductance. The LTD4 response could be induced in normal hepatocytes by culture with either conditioned medium from LPS-treated macrophages or purified TNF-alpha. In conclusion, intracellular LTD4 activates a chloride conductance in hepatocytes isolated from rats treated with LPS or primed in vitro with TNF-alpha. Changes in the hepatocellular accumulation of leukotrienes therefore mediate channel activation and may contribute to liver injury during sepsis and other inflammatory conditions.

Full Text

The Full Text of this article is available as a PDF (206.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballatori N., Simmons T. W., Boyer J. L. A volume-activated taurine channel in skate hepatocytes: membrane polarity and role of intracellular ATP. Am J Physiol. 1994 Aug;267(2 Pt 1):G285–G291. doi: 10.1152/ajpgi.1994.267.2.G285. [DOI] [PubMed] [Google Scholar]
  2. Beutler B., Mahoney J., Le Trang N., Pekala P., Cerami A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med. 1985 May 1;161(5):984–995. doi: 10.1084/jem.161.5.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Büchler M., König J., Brom M., Kartenbeck J., Spring H., Horie T., Keppler D. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996 Jun 21;271(25):15091–15098. doi: 10.1074/jbc.271.25.15091. [DOI] [PubMed] [Google Scholar]
  4. Cantiello H. F., Patenaude C. R., Codina J., Birnbaumer L., Ausiello D. A. G alpha i-3 regulates epithelial Na+ channels by activation of phospholipase A2 and lipoxygenase pathways. J Biol Chem. 1990 Dec 15;265(35):21624–21628. [PubMed] [Google Scholar]
  5. Carl A., Lee H. K., Sanders K. M. Regulation of ion channels in smooth muscles by calcium. Am J Physiol. 1996 Jul;271(1 Pt 1):C9–34. doi: 10.1152/ajpcell.1996.271.1.C9. [DOI] [PubMed] [Google Scholar]
  6. Chan C. C., Ecclestone P., Nicholson D. W., Metters K. M., Pon D. J., Rodger I. W. Leukotriene D4-induced increases in cytosolic calcium in THP-1 cells: dependence on extracellular calcium and inhibition with selective leukotriene D4 receptor antagonists. J Pharmacol Exp Ther. 1994 Jun;269(3):891–896. [PubMed] [Google Scholar]
  7. Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992 Dec 4;258(5088):1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  8. Crooke S. T., Sarau H., Saussy D., Winkler J., Foley J. Signal transduction processes for the LTD4 receptor. Adv Prostaglandin Thromboxane Leukot Res. 1990;20:127–137. [PubMed] [Google Scholar]
  9. Dubinsky W. P., Jr The physiology of epithelial chloride channels. Hosp Pract (Off Ed) 1989 Jan 15;24(1):69-80, 82. doi: 10.1080/21548331.1989.11703642. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  11. Fukai F., Suzuki Y., Nishizawa Y., Katayama T. Transcellular biosynthesis of cysteinyl leukotrienes by Kupffer cell-hepatocyte cooperation in rat liver. Cell Biol Int. 1996 Jun;20(6):423–428. doi: 10.1006/cbir.1996.0053. [DOI] [PubMed] [Google Scholar]
  12. Fukai F., Suzuki Y., Ohtaki H., Katayama T. Rat hepatocytes generate peptide leukotrienes from leukotriene A4. Arch Biochem Biophys. 1993 Sep;305(2):378–384. doi: 10.1006/abbi.1993.1435. [DOI] [PubMed] [Google Scholar]
  13. Gekeler V., Ise W., Sanders K. H., Ulrich W. R., Beck J. The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem Biophys Res Commun. 1995 Mar 8;208(1):345–352. doi: 10.1006/bbrc.1995.1344. [DOI] [PubMed] [Google Scholar]
  14. Gillard J., Ford-Hutchinson A. W., Chan C., Charleson S., Denis D., Foster A., Fortin R., Leger S., McFarlane C. S., Morton H. L-663,536 (MK-886) (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2 - dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol. 1989 May;67(5):456–464. doi: 10.1139/y89-073. [DOI] [PubMed] [Google Scholar]
  15. Gollapudi S., McDonald T., Gardner P., Kang N., Gupta S. Abnormal chloride conductance in multidrug resistant HL60/AR cells. Cancer Lett. 1992 Sep 14;66(1):83–89. doi: 10.1016/0304-3835(92)90284-3. [DOI] [PubMed] [Google Scholar]
  16. Gut J. Homeostasis of eicosanoids in the liver critically depends on partial O2 concentrations. J Hepatol. 1994 May;20(5):563–566. doi: 10.1016/s0168-8278(05)80340-x. [DOI] [PubMed] [Google Scholar]
  17. Haddad P., Beck J. S., Boyer J. L., Graf J. Role of chloride ions in liver cell volume regulation. Am J Physiol. 1991 Aug;261(2 Pt 1):G340–G348. doi: 10.1152/ajpgi.1991.261.2.G340. [DOI] [PubMed] [Google Scholar]
  18. Han E. S., Vanoye C. G., Altenberg G. A., Reuss L. P-glycoprotein-associated chloride currents revealed by specific block by an anti-P-glycoprotein antibody. Am J Physiol. 1996 May;270(5 Pt 1):C1370–C1378. doi: 10.1152/ajpcell.1996.270.5.C1370. [DOI] [PubMed] [Google Scholar]
  19. Hardy S. P., Goodfellow H. R., Valverde M. A., Gill D. R., Sepúlveda V., Higgins C. F. Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J. 1995 Jan 3;14(1):68–75. doi: 10.1002/j.1460-2075.1995.tb06976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huwyler J., Bürgin M., Zeugin T., Gut J. Transformation of 5-hydroperoxyeicosatetraenoic acid into dihydroxy- and cysteinyl-leukotrienes by rat hepatocytes: effects of glutathione. Mol Pharmacol. 1991 Mar;39(3):314–323. [PubMed] [Google Scholar]
  21. Ismailov I. I., Jovov B., Fuller C. M., Berdiev B. K., Keeton D. A., Benos D. J. G-protein regulation of outwardly rectified epithelial chloride channels incorporated into planar bilayer membranes. J Biol Chem. 1996 Mar 1;271(9):4776–4780. doi: 10.1074/jbc.271.9.4776. [DOI] [PubMed] [Google Scholar]
  22. Jentsch T. J. Molecular physiology of anion channels. Curr Opin Cell Biol. 1994 Aug;6(4):600–606. doi: 10.1016/0955-0674(94)90082-5. [DOI] [PubMed] [Google Scholar]
  23. Jones T. R., Zamboni R., Belley M., Champion E., Charette L., Ford-Hutchinson A. W., Frenette R., Gauthier J. Y., Leger S., Masson P. Pharmacology of L-660,711 (MK-571): a novel potent and selective leukotriene D4 receptor antagonist. Can J Physiol Pharmacol. 1989 Jan;67(1):17–28. doi: 10.1139/y89-004. [DOI] [PubMed] [Google Scholar]
  24. Jovov B., Ismailov I. I., Benos D. J. Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia. J Biol Chem. 1995 Jan 27;270(4):1521–1528. doi: 10.1074/jbc.270.4.1521. [DOI] [PubMed] [Google Scholar]
  25. Kao J. P. Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods Cell Biol. 1994;40:155–181. doi: 10.1016/s0091-679x(08)61114-0. [DOI] [PubMed] [Google Scholar]
  26. Keppler D., Hagmann W., Rapp S., Denzlinger C., Koch H. K. The relation of leukotrienes to liver injury. Hepatology. 1985 Sep-Oct;5(5):883–891. doi: 10.1002/hep.1840050530. [DOI] [PubMed] [Google Scholar]
  27. Keppler D., Huber M., Baumert T. Leukotrienes as mediators in diseases of the liver. Semin Liver Dis. 1988 Nov;8(4):357–366. doi: 10.1055/s-2008-1040557. [DOI] [PubMed] [Google Scholar]
  28. Keppler D. Leukotrienes: biosynthesis, transport, inactivation, and analysis. Rev Physiol Biochem Pharmacol. 1992;121:1–30. doi: 10.1007/BFb0033192. [DOI] [PubMed] [Google Scholar]
  29. Kim D., Lewis D. L., Graziadei L., Neer E. J., Bar-Sagi D., Clapham D. E. G-protein beta gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature. 1989 Feb 9;337(6207):557–560. doi: 10.1038/337557a0. [DOI] [PubMed] [Google Scholar]
  30. Koumi S., Sato R., Aramaki T. Characterization of the calcium-activated chloride channel in isolated guinea-pig hepatocytes. J Gen Physiol. 1994 Aug;104(2):357–373. doi: 10.1085/jgp.104.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kurachi Y., Ito H., Sugimoto T., Shimizu T., Miki I., Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature. 1989 Feb 9;337(6207):555–557. doi: 10.1038/337555a0. [DOI] [PubMed] [Google Scholar]
  32. Lambert I. H., Hoffmann E. K., Christensen P. Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J Membr Biol. 1987;98(3):247–256. doi: 10.1007/BF01871187. [DOI] [PubMed] [Google Scholar]
  33. Lambert I. H., Hoffmann E. K. Regulation of taurine transport in Ehrlich ascites tumor cells. J Membr Biol. 1993 Jan;131(1):67–79. doi: 10.1007/BF02258535. [DOI] [PubMed] [Google Scholar]
  34. Lambert I. H. Leukotriene-D4 induced cell shrinkage in Ehrlich ascites tumor cells. J Membr Biol. 1989 May;108(2):165–176. doi: 10.1007/BF01871027. [DOI] [PubMed] [Google Scholar]
  35. Leier I., Jedlitschky G., Buchholz U., Cole S. P., Deeley R. G., Keppler D. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem. 1994 Nov 11;269(45):27807–27810. [PubMed] [Google Scholar]
  36. Maglova L. M., Jackson A. M., Meng X. J., Carruth M. W., Schteingart C. D., Ton-Nu H. T., Hofmann A. F., Weinman S. A. Transport characteristics of three fluorescent conjugated bile acid analogs in isolated rat hepatocytes and couplets. Hepatology. 1995 Aug;22(2):637–647. [PubMed] [Google Scholar]
  37. Mayer R., Kartenbeck J., Büchler M., Jedlitschky G., Leier I., Keppler D. Expression of the MRP gene-encoded conjugate export pump in liver and its selective absence from the canalicular membrane in transport-deficient mutant hepatocytes. J Cell Biol. 1995 Oct;131(1):137–150. doi: 10.1083/jcb.131.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Meng X. J., Weinman S. A. cAMP- and swelling-activated chloride conductance in rat hepatocytes. Am J Physiol. 1996 Jul;271(1 Pt 1):C112–C120. doi: 10.1152/ajpcell.1996.271.1.C112. [DOI] [PubMed] [Google Scholar]
  39. Nagai H., Shimazawa T., Yakuo I., Aoki M., Koda A., Kasahara M. Role of peptide-leukotrienes in liver injury in mice. Inflammation. 1989 Dec;13(6):673–680. doi: 10.1007/BF00914311. [DOI] [PubMed] [Google Scholar]
  40. Paulusma C. C., Bosma P. J., Zaman G. J., Bakker C. T., Otter M., Scheffer G. L., Scheper R. J., Borst P., Oude Elferink R. P. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science. 1996 Feb 23;271(5252):1126–1128. doi: 10.1126/science.271.5252.1126. [DOI] [PubMed] [Google Scholar]
  41. Prié S., Guillemette G., Boulay G., Borgeat P., Sirois P. Leukotriene C4 receptors on guinea pig tracheocytes. J Pharmacol Exp Ther. 1995 Oct;275(1):312–318. [PubMed] [Google Scholar]
  42. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  43. Schweitzer P., Madamba S., Siggins G. R. Arachidonic acid metabolites as mediators of somatostatin-induced increase of neuronal M-current. Nature. 1990 Aug 2;346(6283):464–467. doi: 10.1038/346464a0. [DOI] [PubMed] [Google Scholar]
  44. Schwiebert E. M., Gruenert D. C., Guggino W. B., Stanton B. A. G protein G alpha i-2 inhibits outwardly rectifying chloride channels in human airway epithelial cells. Am J Physiol. 1995 Aug;269(2 Pt 1):C451–C456. doi: 10.1152/ajpcell.1995.269.2.C451. [DOI] [PubMed] [Google Scholar]
  45. Sellinger M., Weinman S. A., Henderson R. M., Zweifach A., Boyer J. L., Graf J. Anion channels in rat liver canalicular plasma membranes reconstituted into planar lipid bilayers. Am J Physiol. 1992 Jun;262(6 Pt 1):G1027–G1032. doi: 10.1152/ajpgi.1992.262.6.G1027. [DOI] [PubMed] [Google Scholar]
  46. Strange K., Jackson P. S. Swelling-activated organic osmolyte efflux: a new role for anion channels. Kidney Int. 1995 Oct;48(4):994–1003. doi: 10.1038/ki.1995.381. [DOI] [PubMed] [Google Scholar]
  47. Trudell J. R., Bendix M., Bosterling B. Hypoxia potentiates killing of hepatocyte monolayers by leukotrienes, hydroperoxyeicosatetraenoic acids, or calcium ionophore A23187. Biochim Biophys Acta. 1984 Apr 16;803(4):338–341. doi: 10.1016/0167-4889(84)90126-5. [DOI] [PubMed] [Google Scholar]
  48. Waters S. L., Schnellmann R. G. Extracellular acidosis and chloride channel inhibitors act in the late phase of cellular injury to prevent death. J Pharmacol Exp Ther. 1996 Sep;278(3):1012–1017. [PubMed] [Google Scholar]
  49. Weinman S. A., Weeks R. P. Electrogenicity of Na-coupled bile salt transport in isolated rat hepatocytes. Am J Physiol. 1993 Jul;265(1 Pt 1):G73–G80. doi: 10.1152/ajpgi.1993.265.1.G73. [DOI] [PubMed] [Google Scholar]
  50. Wettstein M., Noé B., Häussinger D. Metabolism of cysteinyl leukotrienes in the perfused rat liver: the influence of endotoxin pretreatment and the cellular hydration state. Hepatology. 1995 Jul;22(1):235–240. [PubMed] [Google Scholar]
  51. van Kuijck M. A., van Aubel R. A., Busch A. E., Lang F., Russel F. G., Bindels R. J., van Os C. H., Deen P. M. Molecular cloning and expression of a cyclic AMP-activated chloride conductance regulator: a novel ATP-binding cassette transporter. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5401–5406. doi: 10.1073/pnas.93.11.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES