Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jan 15;88(2):385–389. doi: 10.1073/pnas.88.2.385

Conversion of 6-substituted tetrahydropterins to 7-isomers via phenylalanine hydroxylase-generated intermediates.

M D Davis 1, S Kaufman 1, S Milstien 1
PMCID: PMC50815  PMID: 1988938

Abstract

A new variant form of hyperphenylalaninemia has recently been discovered in which the patients characteristically excrete 7-biopterin in their urines in addition to the natural 6-biopterin (Curtius, H. Ch., Kuster, T., Matasovic, A., Blau, N. & Dhondt, J.-L. (1988) Biochem. Biophys. Res. Commun. 153, 715-721). This isomer had not been found previously in humans, and although its origin was not established, preliminary evidence suggested that it might be produced from 6-biopterin. We have now found that 7-biopterin can be formed in vitro from (6R)-tetrahydrobiopterin during the hydroxylation of phenylalanine catalyzed by phenylalanine hydroxylase [L-phenylalanine, tetrahydrobiopterin:oxygen oxidoreductase (4-hydroxylating), EC 1.14.16.1]. The resulting 7-biopterin was unequivocally identified by the following criteria: preparative isolation and conversion to 7-hydroxymethylpterin following periodate oxidation and borohydride reduction, quantitative conversion to pterin-7-carboxylic acid after oxidation with permanganate, and liquid chromatography/thermospray mass spectrometry. Addition of 4a-carbinolamine dehydratase, an enzyme involved in the regeneration of tetrahydrobiopterin from the pterin carbinolamine intermediate (also called 4a-hydroxytetrahydrobiopterin) formed in the phenylalanine hydroxylase reaction, greatly decreased the amount of the 7-biopterin formed. This result implies that the in vitro formation of 7-biopterin occurs via the nonenzymatic rearrangement of the unstable substrate of the dehydratase, 4a-hydroxytetrahydrobiopterin, and suggests that this new variant of hyperphenylalaninemia may be caused by a lack of 4a-carbinolamine dehydratase activity. A mechanism for the rearrangement is proposed that predicts that other 6-substituted tetrahydropterin substrates of the aromatic amino acid hydroxylases could also give rise to rearranged products from an opening of the pyrazine ring of the corresponding 4a-hydroxytetrahydropterin intermediate.

Full text

PDF
385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey S. W., Ayling J. E. Cleavage of the 5-amino substituent of pyrimidine cofactors by phenylalanine hydroxylase. J Biol Chem. 1980 Aug 25;255(16):7774–7781. [PubMed] [Google Scholar]
  2. Bailey S. W., Weintraub S. T., Hamilton S. M., Ayling J. E. Incorporation of molecular oxygen into pyrimidine cofactors by phenylalanine hydroxylase. J Biol Chem. 1982 Jul 25;257(14):8253–8260. [PubMed] [Google Scholar]
  3. Blau N., Curtius H. C., Kuster T., Matasovic A., Schoedon G., Dhondt J. L., Guibaud P., Giudici T., Blaskovics M. Primapterinuria: a new variant of atypical phenylketonuria. J Inherit Metab Dis. 1989;12 (Suppl 2):335–338. doi: 10.1007/BF03335415. [DOI] [PubMed] [Google Scholar]
  4. Craine J. E., Hall E. S., Kaufman S. The isolation and characterization of dihydropteridine reductase from sheep liver. J Biol Chem. 1972 Oct 10;247(19):6082–6091. [PubMed] [Google Scholar]
  5. Curtius H. C., Kuster T., Matasovic A., Blau N., Dhondt J. L. Primapterin, anapterin, and 6-oxo-primapterin, three new 7-substituted pterins identified in a patient with hyperphenylalaninemia. Biochem Biophys Res Commun. 1988 Jun 16;153(2):715–721. doi: 10.1016/s0006-291x(88)81153-7. [DOI] [PubMed] [Google Scholar]
  6. Curtius H. C., Matasovic A., Schoedon G., Kuster T., Guibaud P., Giudici T., Blau N. 7-Substituted pterins. A new class of mammalian pteridines. J Biol Chem. 1990 Mar 5;265(7):3923–3930. [PubMed] [Google Scholar]
  7. Dhondt J. L., Guibaud P., Rolland M. O., Dorche C., Andre S., Forzy G., Hayte J. M. Neonatal hyperphenylalaninaemia presumably caused by a new variant of biopterin synthetase deficiency. Eur J Pediatr. 1988 Feb;147(2):153–157. doi: 10.1007/BF00442213. [DOI] [PubMed] [Google Scholar]
  8. Dix T. A., Kuhn D. M., Benkovic S. J. Mechanism of oxygen activation by tyrosine hydroxylase. Biochemistry. 1987 Jun 16;26(12):3354–3361. doi: 10.1021/bi00386a016. [DOI] [PubMed] [Google Scholar]
  9. Haavik J., Flatmark T. Isolation and characterization of tetrahydropterin oxidation products generated in the tyrosine 3-monooxygenase (tyrosine hydroxylase) reaction. Eur J Biochem. 1987 Oct 1;168(1):21–26. doi: 10.1111/j.1432-1033.1987.tb13381.x. [DOI] [PubMed] [Google Scholar]
  10. Huang C. Y., Kaufman S. Studies on the mechanisms of action of phenylalanine hydroxylase and its protein stimulator. I. Enzyme concentration dependence of the specific activity of phenylalanine hydroxylase due to a nonenzymatic step. J Biol Chem. 1973 Jun 25;248(12):4242–4251. [PubMed] [Google Scholar]
  11. Huang C. Y., Max E. E., Kaufman S. Purification and characterization of phenylalanine hydroxylase-stimulating protein from rat liver. J Biol Chem. 1973 Jun 25;248(12):4235–4241. [PubMed] [Google Scholar]
  12. Huang C. Y., Max E. E., Kaufman S. Purification and characterization of phenylalanine hydroxylase-stimulating protein from rat liver. J Biol Chem. 1973 Jun 25;248(12):4235–4241. [PubMed] [Google Scholar]
  13. JERVIS G. A. Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proc Soc Exp Biol Med. 1953 Mar;82(3):514–515. [PubMed] [Google Scholar]
  14. KAUFMAN S. A new cofactor required for the enzymatic conversion of phenylalanine to tyrosine. J Biol Chem. 1958 Feb;230(2):931–939. [PubMed] [Google Scholar]
  15. KAUFMAN S. Phenylalanine hydroxylation cofactor in phenylketonuria. Science. 1958 Dec 12;128(3337):1506–1508. doi: 10.1126/science.128.3337.1506. [DOI] [PubMed] [Google Scholar]
  16. KAUFMAN S. THE STRUCTURE OF THE PHENYLALANINE-HYDROXYLATION COFACTOR. Proc Natl Acad Sci U S A. 1963 Dec;50:1085–1093. doi: 10.1073/pnas.50.6.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KAUFMAN S. The enzymatic conversion of phenylalanine to tyrosine. J Biol Chem. 1957 May;226(1):511–524. [PubMed] [Google Scholar]
  18. Kaufman S. A protein that stimulates rat liver phenylalanine hydroxylase. J Biol Chem. 1970 Sep 25;245(18):4751–4759. [PubMed] [Google Scholar]
  19. Kaufman S., Fisher D. B. Purification and some physical properties of phenylalanine hydroxylase from rat liver. J Biol Chem. 1970 Sep 25;245(18):4745–4750. [PubMed] [Google Scholar]
  20. Kaufman S., Holtzman N. A., Milstien S., Butler L. J., Krumholz A. Phenylketonuria due to a deficiency of dihydropteridine reductase. N Engl J Med. 1975 Oct 16;293(16):785–790. doi: 10.1056/NEJM197510162931601. [DOI] [PubMed] [Google Scholar]
  21. Kaufman S., Milstien S., Bartholomé K. Letter: New forms of phenylketonuria. Lancet. 1975 Oct 11;2(7937):708–708. doi: 10.1016/s0140-6736(75)90806-5. [DOI] [PubMed] [Google Scholar]
  22. Kaufman S. Phenylalanine 4-monooxygenase from rat liver. Methods Enzymol. 1987;142:3–17. doi: 10.1016/s0076-6879(87)42003-x. [DOI] [PubMed] [Google Scholar]
  23. Leeming R. J., Blair J. A., Rey F. Letter: Biopterin derivatives in atypical phenylketonuria. Lancet. 1976 Jan 10;1(7950):99–100. doi: 10.1016/s0140-6736(76)90204-x. [DOI] [PubMed] [Google Scholar]
  24. Nichol C. A., Smith G. K., Duch D. S. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem. 1985;54:729–764. doi: 10.1146/annurev.bi.54.070185.003501. [DOI] [PubMed] [Google Scholar]
  25. Niederwieser A., Blau N., Wang M., Joller P., Atarés M., Cardesa-Garcia J. GTP cyclohydrolase I deficiency, a new enzyme defect causing hyperphenylalaninemia with neopterin, biopterin, dopamine, and serotonin deficiencies and muscular hypotonia. Eur J Pediatr. 1984 Feb;141(4):208–214. doi: 10.1007/BF00572762. [DOI] [PubMed] [Google Scholar]
  26. Niederwieser A., Leimbacher W., Curtius H. C., Ponzone A., Rey F., Leupold D. Atypical phenylketonuria with "dihydrobiopterin synthetase" deficiency: absence of phosphate-eliminating enzyme activity demonstrated in liver. Eur J Pediatr. 1985 May;144(1):13–16. doi: 10.1007/BF00491917. [DOI] [PubMed] [Google Scholar]
  27. Niederwieser A., Ponzone A., Curtius H. C. Differential diagnosis of tetrahydrobiopterin deficiency. J Inherit Metab Dis. 1985;8 (Suppl 1):34–38. doi: 10.1007/BF01800657. [DOI] [PubMed] [Google Scholar]
  28. Rey F., Blandin-Savoja F., Rey J. Atypical phenylketonuria with normal dihydropteridine reductase activity. N Engl J Med. 1976 Nov 11;295(20):1138–1139. doi: 10.1056/NEJM197611112952018. [DOI] [PubMed] [Google Scholar]
  29. Shiman R., Gray D. W., Pater A. A simple purification of phenylalanine hydroxylase by substrate-induced hydrophobic chromatography. J Biol Chem. 1979 Nov 25;254(22):11300–11306. [PubMed] [Google Scholar]
  30. Smith I., Clayton B. E., Wolff O. H. Letter: A variant of phenylketonuria. Lancet. 1975 Feb 8;1(7902):328–329. doi: 10.1016/s0140-6736(75)91230-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES