Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 15;99(12):2979–2991. doi: 10.1172/JCI119493

Differential screening of a human chromosome 3 library identifies hepatocyte growth factor-like/macrophage-stimulating protein and its receptor in injured lung. Possible implications for neuroendocrine cell survival.

C G Willett 1, D I Smith 1, V Shridhar 1, M H Wang 1, R L Emanuel 1, K Patidar 1, S A Graham 1, F Zhang 1, V Hatch 1, D J Sugarbaker 1, M E Sunday 1
PMCID: PMC508150  PMID: 9185522

Abstract

Transient pulmonary neuroendocrine cell hyperplasia and non-neuroendocrine lung tumors develop in nitrosaminetreated hamsters, which we hypothesized might modulate epithelial cell phenotype by expressing gene(s) homologous to human chromosome 3p gene(s) deleted in small cell carcinoma of the lung (SCLC). We differentially screened a chromosome 3 library using nitrosamine-treated versus normal hamster lung cDNAs and identified hepatocyte growth factor-like/macrophage-stimulating protein (HGFL/MSP) in injured lung. HGFL/MSP mRNA is low to undetectable in human SCLC and carcinoid tumors, but the HGFL/MSP tyrosine kinase receptor, RON, is present and functional on many of these neuroendocrine tumors. In H835, a pulmonary carcinoid cell line, and H187, a SCLC cell line, HGFL/ MSP induced adhesion/flattening and apoptosis. Using viable cell counts to assess proliferation after 14 d of treatment with HGFL/MSP, there is growth inhibition of H835 but not H187. Nitrosamine-treated hamsters also demonstrate pulmonary neuroendocrine cell apoptosis in situ during the same time period as expression of the endogenous HGFL/ MSP gene, immediately preceding the spontaneous regression of neuroendocrine cell hyperplasia. These observations suggest that HGFL/MSP might regulate neuroendocrine cell survival during preneoplastic lung injury, which could influence the ultimate tumor cell phenotype.

Full Text

The Full Text of this article is available as a PDF (12.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENSCH K. G., GORDON G. B., MILLER L. R. ELECTRON MICROSCOPIC AND BIOCHEMICAL STUDIES ON THE BRONCHIAL CARCINOID TUMOR. Cancer. 1965 May;18:592–602. doi: 10.1002/1097-0142(196505)18:5<592::aid-cncr2820180508>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  2. Bensch K. G., Corrin B., Pariente R., Spencer H. Oat-cell carcinoma of the lung. Its origin and relationship to bronchial carcinoid. Cancer. 1968 Dec;22(6):1163–1172. doi: 10.1002/1097-0142(196811)22:6<1163::aid-cncr2820220612>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  3. Bezerra J. A., Witte D. P., Aronow B. J., Degen S. J. Hepatocyte-specific expression of the mouse hepatocyte growth factor-like protein. Hepatology. 1993 Aug;18(2):394–399. [PubMed] [Google Scholar]
  4. Boudreau N., Sympson C. J., Werb Z., Bissell M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995 Feb 10;267(5199):891–893. doi: 10.1126/science.7531366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brauch H., Johnson B., Hovis J., Yano T., Gazdar A., Pettengill O. S., Graziano S., Sorenson G. D., Poiesz B. J., Minna J. Molecular analysis of the short arm of chromosome 3 in small-cell and non-small-cell carcinoma of the lung. N Engl J Med. 1987 Oct 29;317(18):1109–1113. doi: 10.1056/NEJM198710293171803. [DOI] [PubMed] [Google Scholar]
  6. Bronner-Fraser M. Hepatocyte growth factor/scatter factor (HGF/SF) in early development: evidence for a role in neural induction. Trends Genet. 1995 Nov;11(11):423–425. doi: 10.1016/s0168-9525(00)89136-2. [DOI] [PubMed] [Google Scholar]
  7. Carney D. N., Gazdar A. F., Bepler G., Guccion J. G., Marangos P. J., Moody T. W., Zweig M. H., Minna J. D. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res. 1985 Jun;45(6):2913–2923. [PubMed] [Google Scholar]
  8. Chung G. T., Sundaresan V., Hasleton P., Rudd R., Taylor R., Rabbitts P. H. Sequential molecular genetic changes in lung cancer development. Oncogene. 1995 Dec 21;11(12):2591–2598. [PubMed] [Google Scholar]
  9. Daly M. C., Xiang R. H., Buchhagen D., Hensel C. H., Garcia D. K., Killary A. M., Minna J. D., Naylor S. L. A homozygous deletion on chromosome 3 in a small cell lung cancer cell line correlates with a region of tumor suppressor activity. Oncogene. 1993 Jul;8(7):1721–1729. [PubMed] [Google Scholar]
  10. Degen S. J., Stuart L. A., Han S., Jamison C. S. Characterization of the mouse cDNA and gene coding for a hepatocyte growth factor-like protein: expression during development. Biochemistry. 1991 Oct 8;30(40):9781–9791. doi: 10.1021/bi00104a030. [DOI] [PubMed] [Google Scholar]
  11. Drabkin H., Wright M., Jonsen M., Varkony T., Jones C., Sage M., Gold S., Morse H., Mendez M., Erickson P. Development of a somatic cell hybrid mapping panel and molecular probes for human chromosome 3. Genomics. 1990 Nov;8(3):435–446. doi: 10.1016/0888-7543(90)90029-t. [DOI] [PubMed] [Google Scholar]
  12. Fratelli M., Galli G., Minto M., Pasinetti G. M. Role of clusterin in cell adhesion during early phases of programmed cell death in P19 embryonic carcinoma cells. Biochim Biophys Acta. 1996 Apr 24;1311(2):71–76. doi: 10.1016/0167-4889(95)00192-1. [DOI] [PubMed] [Google Scholar]
  13. Gebert J. F., Moghal N., Frangioni J. V., Sugarbaker D. J., Neel B. G. High frequency of retinoic acid receptor beta abnormalities in human lung cancer. Oncogene. 1991 Oct;6(10):1859–1868. [PubMed] [Google Scholar]
  14. Gohda E., Nakamura S., Yamamoto I., Minowada J. Hepatocyte growth factor--pleiotropic cytokine produced by human leukemia cells. Leuk Lymphoma. 1995 Oct;19(3-4):197–205. doi: 10.3109/10428199509107889. [DOI] [PubMed] [Google Scholar]
  15. Han S., Degen S. J. Genomic organization, chromosomal localization and developmental expression of hepatocyte growth factor-like protein. EXS. 1993;65:81–105. [PubMed] [Google Scholar]
  16. Han S., Stuart L. A., Degen S. J. Characterization of the DNF15S2 locus on human chromosome 3: identification of a gene coding for four kringle domains with homology to hepatocyte growth factor. Biochemistry. 1991 Oct 8;30(40):9768–9780. doi: 10.1021/bi00104a029. [DOI] [PubMed] [Google Scholar]
  17. Hinds P. W., Weinberg R. A. Tumor suppressor genes. Curr Opin Genet Dev. 1994 Feb;4(1):135–141. doi: 10.1016/0959-437x(94)90102-3. [DOI] [PubMed] [Google Scholar]
  18. Jiang W. G., Lloyds D., Puntis M. C., Nakamura T., Hallett M. B. Regulation of spreading and growth of colon cancer cells by hepatocyte growth factor. Clin Exp Metastasis. 1993 May;11(3):235–242. doi: 10.1007/BF00121166. [DOI] [PubMed] [Google Scholar]
  19. Johnson B. E., Sakaguchi A. Y., Gazdar A. F., Minna J. D., Burch D., Marshall A., Naylor S. L. Restriction fragment length polymorphism studies show consistent loss of chromosome 3p alleles in small cell lung cancer patients' tumors. J Clin Invest. 1988 Aug;82(2):502–507. doi: 10.1172/JCI113624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Killary A. M., Wolf M. E., Giambernardi T. A., Naylor S. L. Definition of a tumor suppressor locus within human chromosome 3p21-p22. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10877–10881. doi: 10.1073/pnas.89.22.10877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kirkland S. C. Clonal origin of columnar, mucous, and endocrine cell lineages in human colorectal epithelium. Cancer. 1988 Apr 1;61(7):1359–1363. doi: 10.1002/1097-0142(19880401)61:7<1359::aid-cncr2820610714>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  22. Knudson A. G. Antioncogenes and human cancer. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10914–10921. doi: 10.1073/pnas.90.23.10914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kok K., Hofstra R., Pilz A., van den Berg A., Terpstra P., Buys C. H., Carritt B. A gene in the chromosomal region 3p21 with greatly reduced expression in lung cancer is similar to the gene for ubiquitin-activating enzyme. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6071–6075. doi: 10.1073/pnas.90.13.6071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kok K., van den Berg A., Veldhuis P. M., van der Veen A. Y., Franke M., Schoenmakers E. F., Hulsbeek M. M., van der Hout A. H., de Leij L., van de Ven W. A homozygous deletion in a small cell lung cancer cell line involving a 3p21 region with a marked instability in yeast artificial chromosomes. Cancer Res. 1994 Aug 1;54(15):4183–4187. [PubMed] [Google Scholar]
  25. LaForgia S., Morse B., Levy J., Barnea G., Cannizzaro L. A., Li F., Nowell P. C., Boghosian-Sell L., Glick J., Weston A. Receptor protein-tyrosine phosphatase gamma is a candidate tumor suppressor gene at human chromosome region 3p21. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5036–5040. doi: 10.1073/pnas.88.11.5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Latif F., Tory K., Gnarra J., Yao M., Duh F. M., Orcutt M. L., Stackhouse T., Kuzmin I., Modi W., Geil L. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993 May 28;260(5112):1317–1320. doi: 10.1126/science.8493574. [DOI] [PubMed] [Google Scholar]
  27. Lee J. S., Lippman S. M., Hong W. K., Ro J. Y., Kim S. Y., Lotan R., Hittelman W. N. Determination of biomarkers for intermediate end points in chemoprevention trials. Cancer Res. 1992 May 1;52(9 Suppl):2707s–2710s. [PubMed] [Google Scholar]
  28. Mason R. J., Leslie C. C., McCormick-Shannon K., Deterding R. R., Nakamura T., Rubin J. S., Shannon J. M. Hepatocyte growth factor is a growth factor for rat alveolar type II cells. Am J Respir Cell Mol Biol. 1994 Nov;11(5):561–567. doi: 10.1165/ajrcmb.11.5.7524567. [DOI] [PubMed] [Google Scholar]
  29. Michalopoulos G. K. HGF in liver regeneration and tumor promotion. Prog Clin Biol Res. 1995;391:179–185. [PubMed] [Google Scholar]
  30. Miller Y. E., Minna J. D., Gazdar A. F. Lack of expression of aminoacylase-1 in small cell lung cancer. Evidence for inactivation of genes encoded by chromosome 3p. J Clin Invest. 1989 Jun;83(6):2120–2124. doi: 10.1172/JCI114125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Minna J. D., Schütte J., Viallet J., Thomas F., Kaye F. J., Takahashi T., Nau M., Whang-Peng J., Birrer M., Gazdar A. F. Transcription factors and recessive oncogenes in the pathogenesis of human lung cancer. Int J Cancer Suppl. 1989;4:32–34. doi: 10.1002/ijc.2910440709. [DOI] [PubMed] [Google Scholar]
  32. Moody T. W., Lee M., Kris R. M., Bellot F., Bepler G., Oie H., Gazdar A. F. Lung carcinoid cell lines have bombesin-like peptides and EGF receptors. J Cell Biochem. 1990 Jun;43(2):139–147. doi: 10.1002/jcb.240430205. [DOI] [PubMed] [Google Scholar]
  33. Onishi Y., Azuma Y., Sato Y., Mizuno Y., Tadakuma T., Kizaki H. Topoisomerase inhibitors induce apoptosis in thymocytes. Biochim Biophys Acta. 1993 Jan 17;1175(2):147–154. doi: 10.1016/0167-4889(93)90017-j. [DOI] [PubMed] [Google Scholar]
  34. Oreffo V. I., Lin H. W., Gumerlock P. H., Kraegel S. A., Witschi H. Mutational analysis of a dominant oncogene (c-Ki-ras-2) and a tumor suppressor gene (p53) in hamster lung tumorigenesis. Mol Carcinog. 1992;6(3):199–202. doi: 10.1002/mc.2940060305. [DOI] [PubMed] [Google Scholar]
  35. Oreffo V. I., Lin H. W., Padmanabhan R., Witschi H. K-ras and p53 point mutations in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced hamster lung tumors. Carcinogenesis. 1993 Mar;14(3):451–455. doi: 10.1093/carcin/14.3.451. [DOI] [PubMed] [Google Scholar]
  36. Ron D. Inducible growth arrest: new mechanistic insights. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):1985–1986. doi: 10.1073/pnas.91.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ronsin C., Muscatelli F., Mattei M. G., Breathnach R. A novel putative receptor protein tyrosine kinase of the met family. Oncogene. 1993 May;8(5):1195–1202. [PubMed] [Google Scholar]
  38. Rosen E. M., Goldberg I. D. Scatter factor and angiogenesis. Adv Cancer Res. 1995;67:257–279. doi: 10.1016/s0065-230x(08)60715-0. [DOI] [PubMed] [Google Scholar]
  39. Sekido Y., Bader S., Latif F., Gnarra J. R., Gazdar A. F., Linehan W. M., Zbar B., Lerman M. I., Minna J. D. Molecular analysis of the von Hippel-Lindau disease tumor suppressor gene in human lung cancer cell lines. Oncogene. 1994 Jun;9(6):1599–1604. [PubMed] [Google Scholar]
  40. Skeel A., Yoshimura T., Showalter S. D., Tanaka S., Appella E., Leonard E. J. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J Exp Med. 1991 May 1;173(5):1227–1234. doi: 10.1084/jem.173.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith D. I., Mangrulker R., Geist R., Gilbert J., Kinsman K., Drabkin H., Golembieski W. Saturation of human chromosome 3 with unique sequence hybridization probes. Genomics. 1989 May;4(4):453–459. doi: 10.1016/0888-7543(89)90268-1. [DOI] [PubMed] [Google Scholar]
  42. Sozzi G., Veronese M. L., Negrini M., Baffa R., Cotticelli M. G., Inoue H., Tornielli S., Pilotti S., De Gregorio L., Pastorino U. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell. 1996 Apr 5;85(1):17–26. doi: 10.1016/s0092-8674(00)81078-8. [DOI] [PubMed] [Google Scholar]
  43. Stewart M. P., Cabanas C., Hogg N. T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J Immunol. 1996 Mar 1;156(5):1810–1817. [PubMed] [Google Scholar]
  44. Sunday M. E., Willett C. G., Graham S. A., Oreffo V. I., Linnoila R. I., Witschi H. Histochemical characterization of non-neuroendocrine tumors and neuroendocrine cell hyperplasia induced in hamster lung by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone with or without hyperoxia. Am J Pathol. 1995 Sep;147(3):740–752. [PMC free article] [PubMed] [Google Scholar]
  45. Sunday M. E., Willett C. G. Induction and spontaneous regression of intense pulmonary neuroendocrine cell differentiation in a model of preneoplastic lung injury. Cancer Res. 1992 May 1;52(9 Suppl):2677s–2686s. [PubMed] [Google Scholar]
  46. Sunday M. E., Willett C. G., Patidar K., Graham S. A. Modulation of oncogene and tumor suppressor gene expression in a hamster model of chronic lung injury with varying degrees of pulmonary neuroendocrine cell hyperplasia. Lab Invest. 1994 Jun;70(6):875–888. [PubMed] [Google Scholar]
  47. Tanizawa A., Fujimori A., Fujimori Y., Pommier Y. Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst. 1994 Jun 1;86(11):836–842. doi: 10.1093/jnci/86.11.836. [DOI] [PubMed] [Google Scholar]
  48. Tawil N. J., Gowri V., Djoneidi M., Nip J., Carbonetto S., Brodt P. Integrin alpha3beta1 can promote adhesion and spreading of metastatic breast carcinoma cells on the lymph node stroma. Int J Cancer. 1996 May 29;66(5):703–710. doi: 10.1002/(SICI)1097-0215(19960529)66:5<703::AID-IJC20>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  49. Thiagalingam S., Lisitsyn N. A., Hamaguchi M., Wigler M. H., Willson J. K., Markowitz S. D., Leach F. S., Kinzler K. W., Vogelstein B. Evaluation of the FHIT gene in colorectal cancers. Cancer Res. 1996 Jul 1;56(13):2936–2939. [PubMed] [Google Scholar]
  50. Wang M. H., Ronsin C., Gesnel M. C., Coupey L., Skeel A., Leonard E. J., Breathnach R. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science. 1994 Oct 7;266(5182):117–119. doi: 10.1126/science.7939629. [DOI] [PubMed] [Google Scholar]
  51. Whang-Peng J., Kao-Shan C. S., Lee E. C., Bunn P. A., Carney D. N., Gazdar A. F., Minna J. D. Specific chromosome defect associated with human small-cell lung cancer; deletion 3p(14-23). Science. 1982 Jan 8;215(4529):181–182. doi: 10.1126/science.6274023. [DOI] [PubMed] [Google Scholar]
  52. Yoshimura T., Yuhki N., Wang M. H., Skeel A., Leonard E. J. Cloning, sequencing, and expression of human macrophage stimulating protein (MSP, MST1) confirms MSP as a member of the family of kringle proteins and locates the MSP gene on chromosome 3. J Biol Chem. 1993 Jul 25;268(21):15461–15468. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES