Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jun 15;99(12):3018–3024. doi: 10.1172/JCI119497

Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland.

M J Abramowicz 1, L Duprez 1, J Parma 1, G Vassart 1, C Heinrichs 1
PMCID: PMC508154  PMID: 9185526

Abstract

Thyroid gland agenesis is the most common cause of congenital hypothyroidism and is usually sporadic. We investigated a brother and sister from consanguineous parents, ascertained through systematic newborn screening, and initially diagnosed with thyroid agenesis. Careful cervical ultrasonography in both patients revealed a very hypoplastic thyroid gland. By direct sequencing of the thyrotropin receptor gene, we identified the substitution of threonine in place of a highly conserved alanine at position 553, in the fourth predicted transmembrane domain. The mutation was found homozygous in the affected siblings, and heterozygous in both parents and two unaffected siblings. Functional analysis in transfected COS-7 cells showed that it resulted in extremely low expression at the cell surface as compared with the wild-type receptor, in spite of an apparently normal intracellular synthesis. The small amount of mutated receptor expressed at the surface of transfected cells bound thyrotropin with normal affinity and responded in terms of cAMP production, but the in vivo significance of these data from overexpressed receptor in transfected cells is unclear. Of note, blood thyroglobulin was unexpectedly elevated in the patients at the time of diagnosis, a finding that might prove useful in refining etiologies of congenital hypothyroidism.

Full Text

The Full Text of this article is available as a PDF (228.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowicz M. J., Targovnik H. M., Varela V., Cochaux P., Krawiec L., Pisarev M. A., Propato F. V., Juvenal G., Chester H. A., Vassart G. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J Clin Invest. 1992 Oct;90(4):1200–1204. doi: 10.1172/JCI115981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beamer W. J., Eicher E. M., Maltais L. J., Southard J. L. Inherited primary hypothyroidism in mice. Science. 1981 Apr 3;212(4490):61–63. doi: 10.1126/science.7209519. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J. 1983 Jun 15;212(3):849–858. doi: 10.1042/bj2120849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bringhurst F. R., Juppner H., Guo J., Urena P., Potts J. T., Jr, Kronenberg H. M., Abou-Samra A. B., Segre G. V. Cloned, stably expressed parathyroid hormone (PTH)/PTH-related peptide receptors activate multiple messenger signals and biological responses in LLC-PK1 kidney cells. Endocrinology. 1993 May;132(5):2090–2098. doi: 10.1210/endo.132.5.8386606. [DOI] [PubMed] [Google Scholar]
  5. Chanoine J. P., Toppet V., Lagasse R., Spehl M., Delange F. Determination of thyroid volume by ultrasound from the neonatal period to late adolescence. Eur J Pediatr. 1991 Apr;150(6):395–399. doi: 10.1007/BF02093716. [DOI] [PubMed] [Google Scholar]
  6. Chazenbalk G. D., Kakinuma A., Jaume J. C., McLachlan S. M., Rapoport B. Evidence for negative cooperativity among human thyrotropin receptors overexpressed in mammalian cells. Endocrinology. 1996 Nov;137(11):4586–4591. doi: 10.1210/endo.137.11.8895321. [DOI] [PubMed] [Google Scholar]
  7. Codaccioni J. L., Carayon P., Michel-Bechet M., Foucault F., Lefort G., Pierron H. Congenital hypothyroidism associated with thyrotropin unresponsiveness and thyroid cell membrane alterations. J Clin Endocrinol Metab. 1980 May;50(5):932–937. doi: 10.1210/jcem-50-5-932. [DOI] [PubMed] [Google Scholar]
  8. Czernichow P., Schlumberger M., Pomarede R., Fragu P. Plasma thyroglobulin measurements help determine the type of thyroid defect in congenital hypothyroidism. J Clin Endocrinol Metab. 1983 Feb;56(2):242–245. doi: 10.1210/jcem-56-2-242. [DOI] [PubMed] [Google Scholar]
  9. Damante G., Di Lauro R. Thyroid-specific gene expression. Biochim Biophys Acta. 1994 Aug 2;1218(3):255–266. doi: 10.1016/0167-4781(94)90176-7. [DOI] [PubMed] [Google Scholar]
  10. Duprez L., Parma J., Van Sande J., Allgeier A., Leclère J., Schvartz C., Delisle M. J., Decoulx M., Orgiazzi J., Dumont J. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet. 1994 Jul;7(3):396–401. doi: 10.1038/ng0794-396. [DOI] [PubMed] [Google Scholar]
  11. Gross B., Misrahi M., Sar S., Milgrom E. Composite structure of the human thyrotropin receptor gene. Biochem Biophys Res Commun. 1991 Jun 14;177(2):679–687. doi: 10.1016/0006-291x(91)91842-z. [DOI] [PubMed] [Google Scholar]
  12. Gu W. X., Du G. G., Kopp P., Rentoumis A., Albanese C., Kohn L. D., Madison L. D., Jameson J. L. The thyrotropin (TSH) receptor transmembrane domain mutation (Pro556-Leu) in the hypothyroid hyt/hyt mouse results in plasma membrane targeting but defective TSH binding. Endocrinology. 1995 Jul;136(7):3146–3153. doi: 10.1210/endo.136.7.7789342. [DOI] [PubMed] [Google Scholar]
  13. Kimura S., Hara Y., Pineau T., Fernandez-Salguero P., Fox C. H., Ward J. M., Gonzalez F. J. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996 Jan 1;10(1):60–69. doi: 10.1101/gad.10.1.60. [DOI] [PubMed] [Google Scholar]
  14. Kosugi S., Okajima F., Ban T., Hidaka A., Shenker A., Kohn L. D. Substitutions of different regions of the third cytoplasmic loop of the thyrotropin (TSH) receptor have selective effects on constitutive, TSH-, and TSH receptor autoantibody-stimulated phosphoinositide and 3',5'-cyclic adenosine monophosphate signal generation. Mol Endocrinol. 1993 Aug;7(8):1009–1020. doi: 10.1210/mend.7.8.7901757. [DOI] [PubMed] [Google Scholar]
  15. Libert F., Lefort A., Gerard C., Parmentier M., Perret J., Ludgate M., Dumont J. E., Vassart G. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1250–1255. doi: 10.1016/0006-291x(89)92736-8. [DOI] [PubMed] [Google Scholar]
  16. Lopata M. A., Cleveland D. W., Sollner-Webb B. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 1984 Jul 25;12(14):5707–5717. doi: 10.1093/nar/12.14.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Misrahi M., Loosfelt H., Atger M., Sar S., Guiochon-Mantel A., Milgrom E. Cloning, sequencing and expression of human TSH receptor. Biochem Biophys Res Commun. 1990 Jan 15;166(1):394–403. doi: 10.1016/0006-291x(90)91958-u. [DOI] [PubMed] [Google Scholar]
  18. Nagayama Y., Kaufman K. D., Seto P., Rapoport B. Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1184–1190. doi: 10.1016/0006-291x(89)92727-7. [DOI] [PubMed] [Google Scholar]
  19. Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., Dumont J., Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993 Oct 14;365(6447):649–651. doi: 10.1038/365649a0. [DOI] [PubMed] [Google Scholar]
  20. Parma J., Van Sande J., Swillens S., Tonacchera M., Dumont J., Vassart G. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades. Mol Endocrinol. 1995 Jun;9(6):725–733. doi: 10.1210/mend.9.6.8592518. [DOI] [PubMed] [Google Scholar]
  21. Parmentier M., Libert F., Maenhaut C., Lefort A., Gérard C., Perret J., Van Sande J., Dumont J. E., Vassart G. Molecular cloning of the thyrotropin receptor. Science. 1989 Dec 22;246(4937):1620–1622. doi: 10.1126/science.2556796. [DOI] [PubMed] [Google Scholar]
  22. Stanbury J. B., Rocmans P., Buhler U. K., Ochi Y. Congenital hypothyroidism with impaired thyroid response to thyrotropin. N Engl J Med. 1968 Nov 21;279(21):1132–1136. doi: 10.1056/NEJM196811212792103. [DOI] [PubMed] [Google Scholar]
  23. Stein S. A., Oates E. L., Hall C. R., Grumbles R. M., Fernandez L. M., Taylor N. A., Puett D., Jin S. Identification of a point mutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol Endocrinol. 1994 Feb;8(2):129–138. doi: 10.1210/mend.8.2.8170469. [DOI] [PubMed] [Google Scholar]
  24. Stein S. A., Shanklin D. R., Krulich L., Roth M. G., Chubb C. M., Adams P. M. Evaluation and characterization of the hyt/hyt hypothyroid mouse. II. Abnormalities of TSH and the thyroid gland. Neuroendocrinology. 1989 May;49(5):509–519. doi: 10.1159/000125160. [DOI] [PubMed] [Google Scholar]
  25. Sunthornthepvarakui T., Gottschalk M. E., Hayashi Y., Refetoff S. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1995 Jan 19;332(3):155–160. doi: 10.1056/NEJM199501193320305. [DOI] [PubMed] [Google Scholar]
  26. Swillens S. Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis. Mol Pharmacol. 1995 Jun;47(6):1197–1203. [PubMed] [Google Scholar]
  27. Szkudlinski M. W., Teh N. G., Grossmann M., Tropea J. E., Weintraub B. D. Engineering human glycoprotein hormone superactive analogues. Nat Biotechnol. 1996 Oct;14(10):1257–1263. doi: 10.1038/nbt1096-1257. [DOI] [PubMed] [Google Scholar]
  28. Takamatsu J., Nishikawa M., Horimoto M., Ohsawa N. Familial unresponsiveness to thyrotropin by autosomal recessive inheritance. J Clin Endocrinol Metab. 1993 Dec;77(6):1569–1573. doi: 10.1210/jcem.77.6.8263143. [DOI] [PubMed] [Google Scholar]
  29. Takeshita A., Nagayama Y., Yamashita S., Takamatsu J., Ohsawa N., Maesaka H., Tachibana K., Tokuhiro E., Ashizawa K., Yokoyama N. Sequence analysis of the thyrotropin (TSH) receptor gene in congenital primary hypothyroidism associated with TSH unresponsiveness. Thyroid. 1994 Fall;4(3):255–259. doi: 10.1089/thy.1994.4.255. [DOI] [PubMed] [Google Scholar]
  30. Van Sande J., Massart C., Costagliola S., Allgeier A., Cetani F., Vassart G., Dumont J. E. Specific activation of the thyrotropin receptor by trypsin. Mol Cell Endocrinol. 1996 May 31;119(2):161–168. doi: 10.1016/0303-7207(96)03804-x. [DOI] [PubMed] [Google Scholar]
  31. de Roux N., Misrahi M., Brauner R., Houang M., Carel J. C., Granier M., Le Bouc Y., Ghinea N., Boumedienne A., Toublanc J. E. Four families with loss of function mutations of the thyrotropin receptor. J Clin Endocrinol Metab. 1996 Dec;81(12):4229–4235. doi: 10.1210/jcem.81.12.8954020. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES