Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 1;100(1):46–57. doi: 10.1172/JCI119520

BCR/ABL induces multiple abnormalities of cytoskeletal function.

R Salgia 1, J L Li 1, D S Ewaniuk 1, W Pear 1, E Pisick 1, S A Burky 1, T Ernst 1, M Sattler 1, L B Chen 1, J D Griffin 1
PMCID: PMC508164  PMID: 9202056

Abstract

The BCR/ABL oncogene causes human chronic myelogenous leukemia (CML), a myeloproliferative disease characterized by massive expansion of hematopoietic progenitor cells and cells of the granulocyte lineage. When transfected into murine hematopoietic cell lines, BCR/ABL causes cytokine-independence and enhances viability. There is also growing evidence that p210(BCR/ABL) affects cytoskeletal structure. p210(BCR/ABL) binds to actin, and several cytoskeletal proteins are tyrosine phosphorylated by this oncoprotein. Also, at least one aspect of cytoskeletal function is abnormal, in that the affinity of beta1 integrins for fibronectin is altered in CML cells. However, isolated changes in beta1 integrin function would be unlikely to explain the clinical phenotype of CML. We used time-lapse video microscopy to study cell motility and cell morphology on extracellular cell matrix protein-coated surfaces of a series of cell lines before and after transformation by BCR/ABL. BCR/ABL was associated with a striking increase in spontaneous motility, membrane ruffling, formation of long actin extensions (filopodia) and accelerated the rate of protrusion and retraction of pseudopodia on fibronectin-coated surfaces. Also, while untransformed cells were sessile for long periods, BCR/ABL-transformed cells exhibited persistent motility, except for brief periods during cell division. Using cell lines transformed by a temperature-sensitive mutant of BCR/ABL, these kinetic abnormalities of cytoskeletal function were shown to require BCR/ABL tyrosine kinase activity. Similar abnormalities of cytoskeletal function on fibronectin-coated surfaces were observed when hematopoietic progenitor cells purified by CD34 selection from patients with CML were compared with CD34 positive cells from normal individuals. Interestingly, alpha-interferon treatment was found to slowly revert the abnormal motility phenotype of BCR/ABL-transformed cells towards normal. The increase in spontaneous motility and other defects of cytoskeletal function described here will be useful biological markers of the functional effects of BCR/ABL in hematopoietic cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazzoni G., Carlesso N., Griffin J. D., Hemler M. E. Bcr/Abl expression stimulates integrin function in hematopoietic cell lines. J Clin Invest. 1996 Jul 15;98(2):521–528. doi: 10.1172/JCI118820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedi A., Griffin C. A., Barber J. P., Vala M. S., Hawkins A. L., Sharkis S. J., Zehnbauer B. A., Jones R. J. Growth factor-mediated terminal differentiation of chronic myeloid leukemia. Cancer Res. 1994 Nov 1;54(21):5535–5538. [PubMed] [Google Scholar]
  3. Bedi A., Zehnbauer B. A., Barber J. P., Sharkis S. J., Jones R. J. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood. 1994 Apr 15;83(8):2038–2044. [PubMed] [Google Scholar]
  4. Bhatia R., McCarthy J. B., Verfaillie C. M. Interferon-alpha restores normal beta 1 integrin-mediated inhibition of hematopoietic progenitor proliferation by the marrow microenvironment in chronic myelogenous leukemia. Blood. 1996 May 1;87(9):3883–3891. [PubMed] [Google Scholar]
  5. Bhatia R., Wayner E. A., McGlave P. B., Verfaillie C. M. Interferon-alpha restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired beta 1 integrin receptor function. J Clin Invest. 1994 Jul;94(1):384–391. doi: 10.1172/JCI117333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlesso N., Griffin J. D., Druker B. J. Use of a temperature-sensitive mutant to define the biological effects of the p210BCR-ABL tyrosine kinase on proliferation of a factor-dependent murine myeloid cell line. Oncogene. 1994 Jan;9(1):149–156. [PubMed] [Google Scholar]
  7. Chissoe S. L., Bodenteich A., Wang Y. F., Wang Y. P., Burian D., Clifton S. W., Crabtree J., Freeman A., Iyer K., Jian L. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics. 1995 May 1;27(1):67–82. doi: 10.1006/geno.1995.1008. [DOI] [PubMed] [Google Scholar]
  8. Daley G. Q., Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9312–9316. doi: 10.1073/pnas.85.23.9312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daley G. Q., McLaughlin J., Witte O. N., Baltimore D. The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science. 1987 Jul 31;237(4814):532–535. doi: 10.1126/science.2440107. [DOI] [PubMed] [Google Scholar]
  10. Fainstein E., Marcelle C., Rosner A., Canaani E., Gale R. P., Dreazen O., Smith S. D., Croce C. M. A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. 1987 Nov 26-Dec 2Nature. 330(6146):386–388. doi: 10.1038/330386a0. [DOI] [PubMed] [Google Scholar]
  11. Gishizky M. L., Witte O. N. Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro. Science. 1992 May 8;256(5058):836–839. doi: 10.1126/science.1375394. [DOI] [PubMed] [Google Scholar]
  12. Gordon M. Y., Dowding C. R., Riley G. P., Goldman J. M., Greaves M. F. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature. 1987 Jul 23;328(6128):342–344. doi: 10.1038/328342a0. [DOI] [PubMed] [Google Scholar]
  13. Kabarowski J. H., Allen P. B., Wiedemann L. M. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. EMBO J. 1994 Dec 15;13(24):5887–5895. doi: 10.1002/j.1460-2075.1994.tb06934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lugo T. G., Pendergast A. M., Muller A. J., Witte O. N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990 Mar 2;247(4946):1079–1082. doi: 10.1126/science.2408149. [DOI] [PubMed] [Google Scholar]
  15. Lévesque J. P., Haylock D. N., Simmons P. J. Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hemopoietic progenitors. Blood. 1996 Aug 15;88(4):1168–1176. [PubMed] [Google Scholar]
  16. Matulonis U., Salgia R., Okuda K., Druker B., Griffin J. D. Interleukin-3 and p210 BCR/ABL activate both unique and overlapping pathways of signal transduction in a factor-dependent myeloid cell line. Exp Hematol. 1993 Oct;21(11):1460–1466. [PubMed] [Google Scholar]
  17. McWhirter J. R., Wang J. Y. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol Cell Biol. 1991 Mar;11(3):1553–1565. doi: 10.1128/mcb.11.3.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McWhirter J. R., Wang J. Y. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J. 1993 Apr;12(4):1533–1546. doi: 10.1002/j.1460-2075.1993.tb05797.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pedersen T. L., Yong K., Pedersen J. O., Hansen N. E., Danø K., Plesner T. Impaired migration in vitro of neutrophils from patients with paroxysmal nocturnal haemoglobinuria. Br J Haematol. 1996 Oct;95(1):45–51. [PubMed] [Google Scholar]
  20. Renshaw M. W., McWhirter J. R., Wang J. Y. The human leukemia oncogene bcr-abl abrogates the anchorage requirement but not the growth factor requirement for proliferation. Mol Cell Biol. 1995 Mar;15(3):1286–1293. doi: 10.1128/mcb.15.3.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rowley J. D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973 Jun 1;243(5405):290–293. doi: 10.1038/243290a0. [DOI] [PubMed] [Google Scholar]
  22. Salgia R., Avraham S., Pisick E., Li J. L., Raja S., Greenfield E. A., Sattler M., Avraham H., Griffin J. D. The related adhesion focal tyrosine kinase forms a complex with paxillin in hematopoietic cells. J Biol Chem. 1996 Dec 6;271(49):31222–31226. doi: 10.1074/jbc.271.49.31222. [DOI] [PubMed] [Google Scholar]
  23. Salgia R., Brunkhorst B., Pisick E., Li J. L., Lo S. H., Chen L. B., Griffin J. D. Increased tyrosine phosphorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL. Oncogene. 1995 Sep 21;11(6):1149–1155. [PubMed] [Google Scholar]
  24. Salgia R., Li J. L., Lo S. H., Brunkhorst B., Kansas G. S., Sobhany E. S., Sun Y., Pisick E., Hallek M., Ernst T. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J Biol Chem. 1995 Mar 10;270(10):5039–5047. doi: 10.1074/jbc.270.10.5039. [DOI] [PubMed] [Google Scholar]
  25. Salgia R., Sattler M., Pisick E., Li J. L., Griffin J. D. p210BCR/ABL induces formation of complexes containing focal adhesion proteins and the protooncogene product p120c-Cbl. Exp Hematol. 1996 Feb;24(2):310–313. [PubMed] [Google Scholar]
  26. Salgia R., Uemura N., Okuda K., Li J. L., Pisick E., Sattler M., de Jong R., Druker B., Heisterkamp N., Chen L. B. CRKL links p210BCR/ABL with paxillin in chronic myelogenous leukemia cells. J Biol Chem. 1995 Dec 8;270(49):29145–29150. doi: 10.1074/jbc.270.49.29145. [DOI] [PubMed] [Google Scholar]
  27. Sattler M., Durstin M. A., Frank D. A., Okuda K., Kaushansky K., Salgia R., Griffin J. D. The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp Hematol. 1995 Aug;23(9):1040–1048. [PubMed] [Google Scholar]
  28. Sattler M., Salgia R., Okuda K., Uemura N., Durstin M. A., Pisick E., Xu G., Li J. L., Prasad K. V., Griffin J. D. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway. Oncogene. 1996 Feb 15;12(4):839–846. [PubMed] [Google Scholar]
  29. Talpaz M., Kantarjian H. M., McCredie K., Trujillo J. M., Keating M. J., Gutterman J. U. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha A in chronic myelogenous leukemia. N Engl J Med. 1986 Apr 24;314(17):1065–1069. doi: 10.1056/NEJM198604243141701. [DOI] [PubMed] [Google Scholar]
  30. Van Etten R. A., Jackson P. K., Baltimore D., Sanders M. C., Matsudaira P. T., Janmey P. A. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J Cell Biol. 1994 Feb;124(3):325–340. doi: 10.1083/jcb.124.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Verfaillie C. M., McCarthy J. B., McGlave P. B. Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and collagen type IV. J Clin Invest. 1992 Oct;90(4):1232–1241. doi: 10.1172/JCI115985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Verma D. S., Spitzer G., Gutterman J. U., Zander A. R., McCredie K. B., Dicke K. A. Human leukocyte interferon preparation blocks granulopoietic differentiation. Blood. 1979 Dec;54(6):1423–1427. [PubMed] [Google Scholar]
  33. Walker L. C., Ganesan T. S., Dhut S., Gibbons B., Lister T. A., Rothbard J., Young B. D. Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. 1987 Oct 29-Nov 4Nature. 329(6142):851–853. doi: 10.1038/329851a0. [DOI] [PubMed] [Google Scholar]
  34. Wetzler M., Talpaz M., Van Etten R. A., Hirsh-Ginsberg C., Beran M., Kurzrock R. Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation. J Clin Invest. 1993 Oct;92(4):1925–1939. doi: 10.1172/JCI116786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamaguchi R., Maki M., Hatanaka M., Sabe H. Unphosphorylated and tyrosine-phosphorylated forms of a focal adhesion protein, paxillin, are substrates for calpain II in vitro: implications for the possible involvement of calpain II in mitosis-specific degradation of paxillin. FEBS Lett. 1994 Dec 12;356(1):114–116. doi: 10.1016/0014-5793(94)01246-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES