Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 1;100(1):68–73. doi: 10.1172/JCI119523

CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract.

D A Schwartz 1, T J Quinn 1, P S Thorne 1, S Sayeed 1, A K Yi 1, A M Krieg 1
PMCID: PMC508166  PMID: 9202058

Abstract

Since unmethylated CpG motifs are more frequent in DNA from bacteria than vertebrates, and the unmethylated CpG motif has recently been reported to have stimulatory effects on lymphocytes, we speculated that bacterial DNA may induce inflammation in the lower respiratory tract through its content of unmethylated CpG motifs. To determine the role of bacterial DNA in lower airway inflammation, we intratracheally instilled prokaryotic and eukaryotic DNA in C3H/HeBFEJ mice and performed whole lung lavage 4 h after the exposure. Heat denatured, single stranded Escherichia coli genomic DNA (0.06 ng endotoxin/microg DNA) was compared to heat denatured, single stranded calf thymus DNA (0.007 endotoxin/microg DNA). 10 microg of bacterial DNA, in comparison to 10 microg of calf thymus DNA, resulted in a fourfold increase in the concentration of cells (P = 0.0002), a fivefold increase in the concentration of neutrophils (P = 0.0002), a 50-fold increase in the concentration of TNF-alpha (P = 0.001), and a fourfold increase in the concentration of both IL-6 (P = 0.0003) and macrophage inflammatory protein-2 (P = 0.0001) in the lavage fluid. Importantly, instillation of 0.60 ng of E. coli LPS resulted in a negligible inflammatory response. To test whether the stimulatory effects of bacterial DNA are due to its unmethylated CpG dinucleotides, we methylated the bacterial DNA and also prepared 20 base pair oligonucleotides with and without CpG motifs. In comparison to instillation of untreated bacterial DNA, methylation of the bacterial DNA resulted in a significant reduction in the concentration of cells and cytokines in the lower respiratory tract. Moreover, oligonucleotides containing embedded unmethylated CpG motifs resulted in inflammation in the lower respiratory tract that was indistinguishable from that observed with untreated bacterial DNA. In contrast, oligonucleotides without the embedded CpG motifs or with embedded but methylated CpG motifs resulted in significantly less inflammation in the lower respiratory tract. The possible relevance of these data to human disease was shown by extracting and analyzing DNA in sputum from patients with cystic fibrosis (CF). Approximately 0.1 to 1% of this sputum DNA was bacterial. Intratracheal instillation of highly purified CF sputum DNA caused acute inflammation similar to that induced by bacterial DNA. These findings suggest that bacterial DNA, and unmethylated CpG motifs in particular, may play an important pathogenic role in inflammatory lung disease.

Full Text

The Full Text of this article is available as a PDF (235.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballas Z. K., Rasmussen W. L., Krieg A. M. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol. 1996 Sep 1;157(5):1840–1845. [PubMed] [Google Scholar]
  2. Bennett R. M., Gabor G. T., Merritt M. M. DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. J Clin Invest. 1985 Dec;76(6):2182–2190. doi: 10.1172/JCI112226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHERNICK W. S., BARBERO G. J. Composition of tracheobronchial secretions in cystic fibrosis of the pancreas and bronchiectasis. Pediatrics. 1959 Nov;24:739–745. [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Cowdery J. S., Chace J. H., Yi A. K., Krieg A. M. Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol. 1996 Jun 15;156(12):4570–4575. [PubMed] [Google Scholar]
  6. Goldberg J. B., Ohman D. E. Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol. 1984 Jun;158(3):1115–1121. doi: 10.1128/jb.158.3.1115-1121.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hobbs M. V., Weigle W. O., Noonan D. J., Torbett B. E., McEvilly R. J., Koch R. J., Cardenas G. J., Ernst D. N. Patterns of cytokine gene expression by CD4+ T cells from young and old mice. J Immunol. 1993 Apr 15;150(8 Pt 1):3602–3614. [PubMed] [Google Scholar]
  8. Jagielo P. J., Thorne P. S., Kern J. A., Quinn T. J., Schwartz D. A. Role of endotoxin in grain dust-induced lung inflammation in mice. Am J Physiol. 1996 Jun;270(6 Pt 1):L1052–L1059. doi: 10.1152/ajplung.1996.270.6.L1052. [DOI] [PubMed] [Google Scholar]
  9. Kedzierski W., Porter J. C. A novel non-enzymatic procedure for removing DNA template from RNA transcription mixtures. Biotechniques. 1991 Feb;10(2):210–214. [PubMed] [Google Scholar]
  10. Klinman D. M., Yi A. K., Beaucage S. L., Conover J., Krieg A. M. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2879–2883. doi: 10.1073/pnas.93.7.2879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krieg A. M. An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. J Lab Clin Med. 1996 Aug;128(2):128–133. doi: 10.1016/s0022-2143(96)90004-9. [DOI] [PubMed] [Google Scholar]
  12. Krieg A. M., Yi A. K., Matson S., Waldschmidt T. J., Bishop G. A., Teasdale R., Koretzky G. A., Klinman D. M. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546–549. doi: 10.1038/374546a0. [DOI] [PubMed] [Google Scholar]
  13. Kuramoto E., Yano O., Kimura Y., Baba M., Makino T., Yamamoto S., Yamamoto T., Kataoka T., Tokunaga T. Oligonucleotide sequences required for natural killer cell activation. Jpn J Cancer Res. 1992 Nov;83(11):1128–1131. doi: 10.1111/j.1349-7006.1992.tb02734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leeper-Woodford S. K., Carey P. D., Byrne K., Jenkins J. K., Fisher B. J., Blocher C., Sugerman H. J., Fowler A. A., 3rd Tumor necrosis factor. Alpha and beta subtypes appear in circulation during onset of sepsis-induced lung injury. Am Rev Respir Dis. 1991 May;143(5 Pt 1):1076–1082. doi: 10.1164/ajrccm/143.5_Pt_1.1076. [DOI] [PubMed] [Google Scholar]
  15. MATTHEWS L. W., SPECTOR S., LEMM J., POTTER J. L. STUDIES ON PULMONARY SECRETIONS. I. THE OVER-ALL CHEMICAL COMPOSITION OF PULMONARY SECRETIONS FROM PATIENTS WITH CYSTIC FIBROSIS, BRONCHIECTASIS, AND LARYNGECTOMY. Am Rev Respir Dis. 1963 Aug;88:199–204. doi: 10.1164/arrd.1963.88.2.199. [DOI] [PubMed] [Google Scholar]
  16. Messina J. P., Gilkeson G. S., Pisetsky D. S. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J Immunol. 1991 Sep 15;147(6):1759–1764. [PubMed] [Google Scholar]
  17. Rozenberg-Arska M., van Strijp J. A., Hoekstra W. P., Verhoef J. Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli. Role of acid DNase. J Clin Invest. 1984 May;73(5):1254–1262. doi: 10.1172/JCI111327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sato Y., Roman M., Tighe H., Lee D., Corr M., Nguyen M. D., Silverman G. J., Lotz M., Carson D. A., Raz E. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science. 1996 Jul 19;273(5273):352–354. doi: 10.1126/science.273.5273.352. [DOI] [PubMed] [Google Scholar]
  19. Tokunaga T., Yamamoto H., Shimada S., Abe H., Fukuda T., Fujisawa Y., Furutani Y., Yano O., Kataoka T., Sudo T. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst. 1984 Apr;72(4):955–962. [PubMed] [Google Scholar]
  20. Yi A. K., Chace J. H., Cowdery J. S., Krieg A. M. IFN-gamma promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J Immunol. 1996 Jan 15;156(2):558–564. [PubMed] [Google Scholar]
  21. Yi A. K., Hornbeck P., Lafrenz D. E., Krieg A. M. CpG DNA rescue of murine B lymphoma cells from anti-IgM-induced growth arrest and programmed cell death is associated with increased expression of c-myc and bcl-xL. J Immunol. 1996 Dec 1;157(11):4918–4925. [PubMed] [Google Scholar]
  22. Yi A. K., Klinman D. M., Martin T. L., Matson S., Krieg A. M. Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol. 1996 Dec 15;157(12):5394–5402. [PubMed] [Google Scholar]
  23. Zhao Q., Song X., Waldschmidt T., Fisher E., Krieg A. M. Oligonucleotide uptake in human hematopoietic cells is increased in leukemia and is related to cellular activation. Blood. 1996 Sep 1;88(5):1788–1795. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES