Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 1;100(1):93–106. doi: 10.1172/JCI119526

Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints.

M W Lark 1, E K Bayne 1, J Flanagan 1, C F Harper 1, L A Hoerrner 1, N I Hutchinson 1, I I Singer 1, S A Donatelli 1, J R Weidner 1, H R Williams 1, R A Mumford 1, L S Lohmander 1
PMCID: PMC508169  PMID: 9202061

Abstract

To examine the activity of matrix metalloproteinases (MMPs) and aggrecanase in control and diseased human articular cartilage, metabolic fragments of aggrecan were detected with monospecific antipeptide antibodies. The distribution and quantity of MMP-generated aggrecan G1 fragments terminating in VDIPEN341 were compared with the distribution of aggrecanase-generated G1 fragments terminating in NITEGE373. Both types of G1 fragments were isolated from osteoarthritic cartilage. The sizes were consistent with a single enzymatic cleavage in the interglobular domain region, with no further proteolytic processing of these fragments. Both neoepitopes were also detected by immunohistochemistry in articular cartilage from patients undergoing joint replacement for osteoarthritis (OA), rheumatoid arthritis (RA), and in cartilage from adults with no known joint disease. In control specimens, the staining intensity for both G1 fragments increased with age, with little staining in cartilage from 22-wk-old fetal samples. There was also an increase with age in the extracted amount of MMP-generated neoepitope in relation to both aggrecan and collagen content, confirming the immunohistochemical results. After the age of 20-30 yr this relationship remained at a steady state. The staining for the MMP-generated epitope was most marked in control cartilage exhibiting histological signs of damage, whereas intense staining for the aggrecanase-generated fragment was often noted in adult cartilage lacking overt histological damage. Intense staining for both neoepitopes appeared in the more severely fibrillated, superficial region of the tissue. Intense immunostaining for both VDIPEN- and NITEGE- neoepitopes was also detected in joint cartilage from patients with OA or RA. Cartilage in these specimens was significantly more degraded and high levels of staining for both epitopes was always seen in areas with extensive cartilage damage. The levels of extracted VDIPEN neoepitope relative to collagen or aggrecan in both OA and RA samples were similar to those seen in age-matched control specimens. Immunostaining for both types of aggrecan fragments was seen surrounding the cells but also further removed in the interterritorial matrix. In some regions of the tissue, both neoepitopes were found while in others only one was detected. Thus, generation and/or turnover of these specific catabolic aggrecan fragments is not necessarily coordinated. Our results are consistent with the presence in both normal and arthritic joint cartilage of proteolytic activity against aggrecan based on both classical MMPs and "aggrecanase."

Full Text

The Full Text of this article is available as a PDF (695.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayne E. K., MacNaul K. L., Donatelli S. A., Christen A., Griffin P. R., Hoerrner L. A., Calaycay J. R., Ayala J. M., Chapman K., Hagmann W. Use of an antibody against the matrix metalloproteinase-generated aggrecan neoepitope FVDIPEN-COOH to assess the effects of stromelysin in a rabbit model of cartilage degradation. Arthritis Rheum. 1995 Oct;38(10):1400–1409. doi: 10.1002/art.1780381007. [DOI] [PubMed] [Google Scholar]
  2. Dean D. D., Martel-Pelletier J., Pelletier J. P., Howell D. S., Woessner J. F., Jr Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989 Aug;84(2):678–685. doi: 10.1172/JCI114215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  4. Firestein G. S., Paine M. M., Littman B. H. Gene expression (collagenase, tissue inhibitor of metalloproteinases, complement, and HLA-DR) in rheumatoid arthritis and osteoarthritis synovium. Quantitative analysis and effect of intraarticular corticosteroids. Arthritis Rheum. 1991 Sep;34(9):1094–1105. doi: 10.1002/art.1780340905. [DOI] [PubMed] [Google Scholar]
  5. Flannery C. R., Lark M. W., Sandy J. D. Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem. 1992 Jan 15;267(2):1008–1014. [PubMed] [Google Scholar]
  6. Fosang A. J., Last K., Knäuper V., Neame P. J., Murphy G., Hardingham T. E., Tschesche H., Hamilton J. A. Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem J. 1993 Oct 1;295(Pt 1):273–276. doi: 10.1042/bj2950273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fosang A. J., Last K., Maciewicz R. A. Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest. 1996 Nov 15;98(10):2292–2299. doi: 10.1172/JCI119040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fosang A. J., Last K., Neame P. J., Murphy G., Knäuper V., Tschesche H., Hughes C. E., Caterson B., Hardingham T. E. Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373-A374 in the interglobular domain of cartilage aggrecan. Biochem J. 1994 Dec 1;304(Pt 2):347–351. doi: 10.1042/bj3040347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fosang A. J., Neame P. J., Hardingham T. E., Murphy G., Hamilton J. A. Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins. J Biol Chem. 1991 Aug 25;266(24):15579–15582. [PubMed] [Google Scholar]
  10. Gravallese E. M., Darling J. M., Ladd A. L., Katz J. N., Glimcher L. H. In situ hybridization studies of stromelysin and collagenase messenger RNA expression in rheumatoid synovium. Arthritis Rheum. 1991 Sep;34(9):1076–1084. doi: 10.1002/art.1780340903. [DOI] [PubMed] [Google Scholar]
  11. Hascall V. C., Kimura J. H. Proteoglycans: isolation and characterization. Methods Enzymol. 1982;82(Pt A):769–800. doi: 10.1016/0076-6879(82)82102-2. [DOI] [PubMed] [Google Scholar]
  12. Hollander A. P., Heathfield T. F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A. R. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994 Apr;93(4):1722–1732. doi: 10.1172/JCI117156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hollander A. P., Pidoux I., Reiner A., Rorabeck C., Bourne R., Poole A. R. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest. 1995 Dec;96(6):2859–2869. doi: 10.1172/JCI118357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hughes C. E., Caterson B., Fosang A. J., Roughley P. J., Mort J. S. Monoclonal antibodies that specifically recognize neoepitope sequences generated by 'aggrecanase' and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J. 1995 Feb 1;305(Pt 3):799–804. doi: 10.1042/bj3050799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ilic M. Z., Handley C. J., Robinson H. C., Mok M. T. Mechanism of catabolism of aggrecan by articular cartilage. Arch Biochem Biophys. 1992 Apr;294(1):115–122. doi: 10.1016/0003-9861(92)90144-l. [DOI] [PubMed] [Google Scholar]
  16. Lark M. W., Gordy J. T., Weidner J. R., Ayala J., Kimura J. H., Williams H. R., Mumford R. A., Flannery C. R., Carlson S. S., Iwata M. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the "aggrecanase" site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem. 1995 Feb 10;270(6):2550–2556. doi: 10.1074/jbc.270.6.2550. [DOI] [PubMed] [Google Scholar]
  17. Lark M. W., Walakovits L. A., Shah T. K., Vanmiddlesworth J., Cameron P. M., Lin T. Y. Production and purification of prostromelysin and procollagenase from IL-1 beta-stimulated human gingival fibroblasts. Connect Tissue Res. 1990;25(1):49–65. doi: 10.3109/03008209009009812. [DOI] [PubMed] [Google Scholar]
  18. Lark M. W., Williams H., Hoernner L. A., Weidner J., Ayala J. M., Harper C. F., Christen A., Olszewski J., Konteatis Z., Webber R. Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum. Biochem J. 1995 Apr 1;307(Pt 1):245–252. doi: 10.1042/bj3070245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu J., Cassidy J. D., Allan A., Neame P. J., Mort J. S., Roughley P. J. Link protein shows species variation in its susceptibility to proteolysis. J Orthop Res. 1992 Sep;10(5):621–630. doi: 10.1002/jor.1100100504. [DOI] [PubMed] [Google Scholar]
  20. Lohmander L. S., Hoerrner L. A., Lark M. W. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum. 1993 Feb;36(2):181–189. doi: 10.1002/art.1780360207. [DOI] [PubMed] [Google Scholar]
  21. Lohmander L. S., Neame P. J., Sandy J. D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 1993 Sep;36(9):1214–1222. doi: 10.1002/art.1780360906. [DOI] [PubMed] [Google Scholar]
  22. Lohmander S. Turnover of proteoglycans in guinea pig costal cartilage. Arch Biochem Biophys. 1977 Apr 15;180(1):93–101. doi: 10.1016/0003-9861(77)90012-1. [DOI] [PubMed] [Google Scholar]
  23. Loulakis P., Shrikhande A., Davis G., Maniglia C. A. N-terminal sequence of proteoglycan fragments isolated from medium of interleukin-1-treated articular-cartilage cultures. Putative site(s) of enzymic cleavage. Biochem J. 1992 Jun 1;284(Pt 2):589–593. doi: 10.1042/bj2840589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mankin H. J., Dorfman H., Lippiello L., Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971 Apr;53(3):523–537. [PubMed] [Google Scholar]
  25. McCachren S. S. Expression of metalloproteinases and metalloproteinase inhibitor in human arthritic synovium. Arthritis Rheum. 1991 Sep;34(9):1085–1093. doi: 10.1002/art.1780340904. [DOI] [PubMed] [Google Scholar]
  26. Mok S. S., Masuda K., Häuselmann H. J., Aydelotte M. B., Thonar E. J. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem. 1994 Dec 30;269(52):33021–33027. [PubMed] [Google Scholar]
  27. Morales T. I., Hascall V. C. Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures. J Biol Chem. 1988 Mar 15;263(8):3632–3638. [PubMed] [Google Scholar]
  28. Morales T. I., Hascall V. C. Effects of interleukin-1 and lipopolysaccharides on protein and carbohydrate metabolism in bovine articular cartilage organ cultures. Connect Tissue Res. 1989;19(2-4):255–275. doi: 10.3109/03008208909043900. [DOI] [PubMed] [Google Scholar]
  29. Nguyen Q., Mort J. S., Roughley P. J. Preferential mRNA expression of prostromelysin relative to procollagenase and in situ localization in human articular cartilage. J Clin Invest. 1992 Apr;89(4):1189–1197. doi: 10.1172/JCI115702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nguyen Q., Murphy G., Roughley P. J., Mort J. S. Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ. Biochem J. 1989 Apr 1;259(1):61–67. doi: 10.1042/bj2590061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plaas A. H., Sandy J. D. A cartilage explant system for studies on aggrecan structure, biosynthesis and catabolism in discrete zones of the mammalian growth plate. Matrix. 1993 Mar;13(2):135–147. doi: 10.1016/s0934-8832(11)80072-7. [DOI] [PubMed] [Google Scholar]
  32. Roughley P. J., White R. J., Poole A. R. Identification of a hyaluronic acid-binding protein that interferes with the preparation of high-buoyant-density proteoglycan aggregates from adult human articular cartilage. Biochem J. 1985 Oct 1;231(1):129–138. doi: 10.1042/bj2310129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sandy J. D., Flannery C. R., Neame P. J., Lohmander L. S. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest. 1992 May;89(5):1512–1516. doi: 10.1172/JCI115742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sandy J. D., Neame P. J., Boynton R. E., Flannery C. R. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem. 1991 May 15;266(14):8683–8685. [PubMed] [Google Scholar]
  35. Sandy J. D., Plaas A. H., Koob T. J. Pathways of aggrecan processing in joint tissues. Implications for disease mechanism and monitoring. Acta Orthop Scand Suppl. 1995 Oct;266:26–32. [PubMed] [Google Scholar]
  36. Saxne T., Heinegård D. Synovial fluid analysis of two groups of proteoglycan epitopes distinguishes early and late cartilage lesions. Arthritis Rheum. 1992 Apr;35(4):385–390. doi: 10.1002/art.1780350404. [DOI] [PubMed] [Google Scholar]
  37. Shu S. Y., Ju G., Fan L. Z. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett. 1988 Feb 29;85(2):169–171. doi: 10.1016/0304-3940(88)90346-1. [DOI] [PubMed] [Google Scholar]
  38. Singer I. I., Kawka D. W., Bayne E. K., Donatelli S. A., Weidner J. R., Williams H. R., Ayala J. M., Mumford R. A., Lark M. W., Glant T. T. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis. J Clin Invest. 1995 May;95(5):2178–2186. doi: 10.1172/JCI117907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Teahan J., Harrison R., Izquierdo M., Stein R. L. Substrate specificity of human fibroblast stromelysin. Hydrolysis of substance P and its analogues. Biochemistry. 1989 Oct 17;28(21):8497–8501. doi: 10.1021/bi00447a034. [DOI] [PubMed] [Google Scholar]
  40. WOESSNER J. F., Jr The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961 May;93:440–447. doi: 10.1016/0003-9861(61)90291-0. [DOI] [PubMed] [Google Scholar]
  41. Walakovits L. A., Moore V. L., Bhardwaj N., Gallick G. S., Lark M. W. Detection of stromelysin and collagenase in synovial fluid from patients with rheumatoid arthritis and posttraumatic knee injury. Arthritis Rheum. 1992 Jan;35(1):35–42. doi: 10.1002/art.1780350106. [DOI] [PubMed] [Google Scholar]
  42. Wolfe G. C., MacNaul K. L., Buechel F. F., McDonnell J., Hoerrner L. A., Lark M. W., Moore V. L., Hutchinson N. I. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum. 1993 Nov;36(11):1540–1547. doi: 10.1002/art.1780361108. [DOI] [PubMed] [Google Scholar]
  43. Wu J. J., Lark M. W., Chun L. E., Eyre D. R. Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J Biol Chem. 1991 Mar 25;266(9):5625–5628. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES