Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 1;100(1):136–141. doi: 10.1172/JCI119505

Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones.

B Schnyder 1, D Mauri-Hellweg 1, M Zanni 1, F Bettens 1, W J Pichler 1
PMCID: PMC508173  PMID: 9202065

Abstract

T cells can recognize small molecular compounds like drugs. It is thought that covalent binding to MHC bound peptides is required for such a hapten stimulation. Sulfamethoxazole, like most drugs, is not chemically reactive per se, but is thought to gain the ability to covalently bind to proteins after intracellular drug metabolism. The purpose of this study was to investigate how sulfamethoxazole is presented in an immunogenic form to sulfamethoxazole-specific T cell clones. The stimulation of four CD4(+) and two CD8(+) sulfamethoxazole-specific T cell clones by different antigen-presenting cells (APC) was measured both by proliferation and cytolytic assays. The MHC restriction was evaluated, first, by inhibition using anti-class I and anti-class II mAb, and second, by the degree of sulfamethoxazole-induced stimulation by partially matched APC. Fixation of APC was performed with glutaraldehyde 0.05%. The clones were specific for sulfamethoxazole without cross-reaction to other sulfonamides. The continuous presence of sulfamethoxazole was required during the assay period since pulsing of the APC was not sufficient to induce proliferation or cytotoxicity. Stimulation of clones required the addition of MHC compatible APC. The APC could be fixed without impairing their ability to present sulfamethoxazole. Sulfamethoxazole can be presented in an unstable, but MHC-restricted fashion, which is independent of processing. These features are best explained by a direct, noncovalent binding of sulfamethoxazole to the MHC-peptide complex.

Full Text

The Full Text of this article is available as a PDF (169.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunner K. T., Mauel J., Cerottini J. C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 1968 Feb;14(2):181–196. [PMC free article] [PubMed] [Google Scholar]
  2. Cavani A., Hackett C. J., Wilson K. J., Rothbard J. B., Katz S. I. Characterization of epitopes recognized by hapten-specific CD4+ T cells. J Immunol. 1995 Feb 1;154(3):1232–1238. [PubMed] [Google Scholar]
  3. Diamond D. J., Szalay P., Symer D., Hao P., Shin H. S., Dintzis R. Z., Dintzis H. M., Reinherz E. L., Siliciano R. F. Major histocompatibility complex independent T cell receptor-antigen interaction: functional analysis using fluorescein derivatives. J Exp Med. 1991 Jul 1;174(1):229–241. doi: 10.1084/jem.174.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferradini L., Roman-Roman S., Azocar J., Michalaki H., Triebel F., Hercend T. Studies on the human T cell receptor alpha/beta variable region genes. II. Identification of four additional V beta subfamilies. Eur J Immunol. 1991 Apr;21(4):935–942. doi: 10.1002/eji.1830210412. [DOI] [PubMed] [Google Scholar]
  5. Genevée C., Diu A., Nierat J., Caignard A., Dietrich P. Y., Ferradini L., Roman-Roman S., Triebel F., Hercend T. An experimentally validated panel of subfamily-specific oligonucleotide primers (V alpha 1-w29/V beta 1-w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction. Eur J Immunol. 1992 May;22(5):1261–1269. doi: 10.1002/eji.1830220522. [DOI] [PubMed] [Google Scholar]
  6. Griem P., Panthel K., Kalbacher H., Gleichmann E. Alteration of a model antigen by Au(III) leads to T cell sensitization to cryptic peptides. Eur J Immunol. 1996 Feb;26(2):279–287. doi: 10.1002/eji.1830260202. [DOI] [PubMed] [Google Scholar]
  7. Matechak E. O., Killeen N., Hedrick S. M., Fowlkes B. J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity. 1996 Apr;4(4):337–347. doi: 10.1016/s1074-7613(00)80247-2. [DOI] [PubMed] [Google Scholar]
  8. Mauri-Hellweg D., Bettens F., Mauri D., Brander C., Hunziker T., Pichler W. J. Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J Immunol. 1995 Jul 1;155(1):462–472. [PubMed] [Google Scholar]
  9. Meekins C. V., Sullivan T. J., Gruchalla R. S. Immunochemical analysis of sulfonamide drug allergy: identification of sulfamethoxazole-substituted human serum proteins. J Allergy Clin Immunol. 1994 Dec;94(6 Pt 1):1017–1024. doi: 10.1016/0091-6749(94)90120-1. [DOI] [PubMed] [Google Scholar]
  10. Morita C. T., Beckman E. M., Bukowski J. F., Tanaka Y., Band H., Bloom B. R., Golan D. E., Brenner M. B. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity. 1995 Oct;3(4):495–507. doi: 10.1016/1074-7613(95)90178-7. [DOI] [PubMed] [Google Scholar]
  11. Moulon C., Vollmer J., Weltzien H. U. Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol. 1995 Dec;25(12):3308–3315. doi: 10.1002/eji.1830251216. [DOI] [PubMed] [Google Scholar]
  12. Nyfeler B., Pichler W. J. The lymphocyte transformation test for the diagnosis of drug allergy: sensitivity and specificity. Clin Exp Allergy. 1997 Feb;27(2):175–181. [PubMed] [Google Scholar]
  13. Park B. K., Coleman J. W., Kitteringham N. R. Drug disposition and drug hypersensitivity. Biochem Pharmacol. 1987 Mar 1;36(5):581–590. [PubMed] [Google Scholar]
  14. Romagnoli P., Spinas G. A., Sinigaglia F. Gold-specific T cells in rheumatoid arthritis patients treated with gold. J Clin Invest. 1992 Jan;89(1):254–258. doi: 10.1172/JCI115569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sottini A., Imberti L., Gorla R., Cattaneo R., Primi D. Restricted expression of T cell receptor V beta but not V alpha genes in rheumatoid arthritis. Eur J Immunol. 1991 Feb;21(2):461–466. doi: 10.1002/eji.1830210231. [DOI] [PubMed] [Google Scholar]
  17. Warrington R. J., Sauder P. J., McPhillips S. Lymphocyte transformation studies in suspected hypersensitivity to trimethoprim-sulphamethoxazole. Clin Allergy. 1983 May;13(3):235–240. doi: 10.1111/j.1365-2222.1983.tb02593.x. [DOI] [PubMed] [Google Scholar]
  18. van der Ven A. J., Mantel M. A., Vree T. B., Koopmans P. P., van der Meer J. W. Formation and elimination of sulphamethoxazole hydroxylamine after oral administration of sulphamethoxazole. Br J Clin Pharmacol. 1994 Aug;38(2):147–150. doi: 10.1111/j.1365-2125.1994.tb04339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. von Bonin A., Ortmann B., Martin S., Weltzien H. U. Peptide-conjugated hapten groups are the major antigenic determinants for trinitrophenyl-specific cytotoxic T cells. Int Immunol. 1992 Aug;4(8):869–874. doi: 10.1093/intimm/4.8.869. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES