Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 1;100(1):169–179. doi: 10.1172/JCI119509

Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo.

R Agah 1, P A Frenkel 1, B A French 1, L H Michael 1, P A Overbeek 1, M D Schneider 1
PMCID: PMC508177  PMID: 9202069

Abstract

Mouse models of human disease can be generated by homologous recombination for germline loss-of-function mutations. However, embryonic-lethal phenotypes and systemic, indirect dysfunction can confound the use of knock-outs to elucidate adult pathophysiology. Site-specific recombination using Cre recombinase can circumvent these pitfalls, in principle, enabling temporal and spatial control of gene recombination. However, direct evidence is lacking for the feasibility of Cre-mediated recombination in postmitotic cells. Here, we exploited transgenic mouse technology plus adenoviral gene transfer to achieve Cre-mediated recombination in cardiac muscle. In vitro, Cre driven by cardiac-specific alpha-myosin heavy chain (alphaMyHC) sequences elicited recombination selectively at loxP sites in purified cardiac myocytes, but not cardiac fibroblasts. In vivo, this alphaMyHC-Cre transgene elicited recombination in cardiac muscle, but not other organs, as ascertained by PCR analysis and localization of a recombination-dependent reporter protein. Adenoviral delivery of Cre in vivo provoked recombination in postmitotic, adult ventricular myocytes. Recombination between loxP sites was not detected in the absence of Cre. These studies demonstrate the feasibility of using Cre-mediated recombination to regulate gene expression in myocardium, with efficient induction of recombination even in terminally differentiated, postmitotic muscle cells. Moreover, delivery of Cre by viral infection provides a simple strategy to control the timing of recombination in myocardium.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdellatif M., MacLellan W. R., Schneider M. D. p21 Ras as a governor of global gene expression. J Biol Chem. 1994 Jun 3;269(22):15423–15426. [PubMed] [Google Scholar]
  2. Anton M., Graham F. L. Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J Virol. 1995 Aug;69(8):4600–4606. doi: 10.1128/jvi.69.8.4600-4606.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Araki K., Araki M., Miyazaki J., Vassalli P. Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):160–164. doi: 10.1073/pnas.92.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baubonis W., Sauer B. Genomic targeting with purified Cre recombinase. Nucleic Acids Res. 1993 May 11;21(9):2025–2029. doi: 10.1093/nar/21.9.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bett A. J., Haddara W., Prevec L., Graham F. L. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8802–8806. doi: 10.1073/pnas.91.19.8802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Brand T., MacLellan W. R., Schneider M. D. A dominant-negative receptor for type beta transforming growth factors created by deletion of the kinase domain. J Biol Chem. 1993 Jun 5;268(16):11500–11503. [PubMed] [Google Scholar]
  8. Bronson S. K., Plaehn E. G., Kluckman K. D., Hagaman J. R., Maeda N., Smithies O. Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9067–9072. doi: 10.1073/pnas.93.17.9067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diebold R. J., Eis M. J., Yin M., Ormsby I., Boivin G. P., Darrow B. J., Saffitz J. E., Doetschman T. Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12215–12219. doi: 10.1073/pnas.92.26.12215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dymecki S. M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6191–6196. doi: 10.1073/pnas.93.12.6191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eustice D. C., Feldman P. A., Colberg-Poley A. M., Buckery R. M., Neubauer R. H. A sensitive method for the detection of beta-galactosidase in transfected mammalian cells. Biotechniques. 1991 Dec;11(6):739-40, 742-3. [PubMed] [Google Scholar]
  12. Fisher K. J., Choi H., Burda J., Chen S. J., Wilson J. M. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology. 1996 Mar 1;217(1):11–22. doi: 10.1006/viro.1996.0088. [DOI] [PubMed] [Google Scholar]
  13. Fishman G. I., Kaplan M. L., Buttrick P. M. Tetracycline-regulated cardiac gene expression in vivo. J Clin Invest. 1994 Apr;93(4):1864–1868. doi: 10.1172/JCI117174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. French B. A., Mazur W., Ali N. M., Geske R. S., Finnigan J. P., Rodgers G. P., Roberts R., Raizner A. E. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circulation. 1994 Nov;90(5):2402–2413. doi: 10.1161/01.cir.90.5.2402. [DOI] [PubMed] [Google Scholar]
  15. Fukushige S., Sauer B. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7905–7909. doi: 10.1073/pnas.89.17.7905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilgenkrantz H., Duboc D., Juillard V., Couton D., Pavirani A., Guillet J. G., Briand P., Kahn A. Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: role of the immune response. Hum Gene Ther. 1995 Oct;6(10):1265–1274. doi: 10.1089/hum.1995.6.10-1265. [DOI] [PubMed] [Google Scholar]
  17. Gu H., Marth J. D., Orban P. C., Mossmann H., Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994 Jul 1;265(5168):103–106. doi: 10.1126/science.8016642. [DOI] [PubMed] [Google Scholar]
  18. Kass-Eisler A., Falck-Pedersen E., Alvira M., Rivera J., Buttrick P. M., Wittenberg B. A., Cipriani L., Leinwand L. A. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11498–11502. doi: 10.1073/pnas.90.24.11498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kass-Eisler A., Falck-Pedersen E., Elfenbein D. H., Alvira M., Buttrick P. M., Leinwand L. A. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther. 1994 Nov;1(6):395–402. [PubMed] [Google Scholar]
  20. Kirshenbaum L. A., MacLellan W. R., Mazur W., French B. A., Schneider M. D. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J Clin Invest. 1993 Jul;92(1):381–387. doi: 10.1172/JCI116577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kochanek S., Clemens P. R., Mitani K., Chen H. H., Chan S., Caskey C. T. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5731–5736. doi: 10.1073/pnas.93.12.5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kühn R., Schwenk F., Aguet M., Rajewsky K. Inducible gene targeting in mice. Science. 1995 Sep 8;269(5229):1427–1429. doi: 10.1126/science.7660125. [DOI] [PubMed] [Google Scholar]
  23. Lakso M., Sauer B., Mosinger B., Jr, Lee E. J., Manning R. W., Yu S. H., Mulder K. L., Westphal H. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6232–6236. doi: 10.1073/pnas.89.14.6232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee E. Y., Chang C. Y., Hu N., Wang Y. C., Lai C. C., Herrup K., Lee W. H., Bradley A. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature. 1992 Sep 24;359(6393):288–294. doi: 10.1038/359288a0. [DOI] [PubMed] [Google Scholar]
  25. Leiden J. M. Gene therapy--promise, pitfalls, and prognosis. N Engl J Med. 1995 Sep 28;333(13):871–873. doi: 10.1056/NEJM199509283331310. [DOI] [PubMed] [Google Scholar]
  26. Letterio J. J., Geiser A. G., Kulkarni A. B., Roche N. S., Sporn M. B., Roberts A. B. Maternal rescue of transforming growth factor-beta 1 null mice. Science. 1994 Jun 24;264(5167):1936–1938. doi: 10.1126/science.8009224. [DOI] [PubMed] [Google Scholar]
  27. Lyons G. E., Schiaffino S., Sassoon D., Barton P., Buckingham M. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol. 1990 Dec;111(6 Pt 1):2427–2436. doi: 10.1083/jcb.111.6.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Metzger D., Clifford J., Chiba H., Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6991–6995. doi: 10.1073/pnas.92.15.6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Michael L. H., Entman M. L., Hartley C. J., Youker K. A., Zhu J., Hall S. R., Hawkins H. K., Berens K., Ballantyne C. M. Myocardial ischemia and reperfusion: a murine model. Am J Physiol. 1995 Dec;269(6 Pt 2):H2147–H2154. doi: 10.1152/ajpheart.1995.269.6.H2147. [DOI] [PubMed] [Google Scholar]
  30. O'Gorman S., Fox D. T., Wahl G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991 Mar 15;251(4999):1351–1355. doi: 10.1126/science.1900642. [DOI] [PubMed] [Google Scholar]
  31. Orban P. C., Chui D., Marth J. D. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6861–6865. doi: 10.1073/pnas.89.15.6861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rajewsky K., Gu H., Kühn R., Betz U. A., Müller W., Roes J., Schwenk F. Conditional gene targeting. J Clin Invest. 1996 Aug 1;98(3):600–603. doi: 10.1172/JCI118828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sands A. T., Hansen T. N., Demayo F. J., Stanley L. A., Xin L., Schwartz R. J. Cytoplasmic beta-actin promoter produces germ cell and preimplantation embryonic transgene expression. Mol Reprod Dev. 1993 Feb;34(2):117–126. doi: 10.1002/mrd.1080340202. [DOI] [PubMed] [Google Scholar]
  34. Sauer B., Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5166–5170. doi: 10.1073/pnas.85.14.5166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sauer B. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol. 1993;225:890–900. doi: 10.1016/0076-6879(93)25056-8. [DOI] [PubMed] [Google Scholar]
  36. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  37. Smith A. J., De Sousa M. A., Kwabi-Addo B., Heppell-Parton A., Impey H., Rabbitts P. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet. 1995 Apr;9(4):376–385. doi: 10.1038/ng0495-376. [DOI] [PubMed] [Google Scholar]
  38. Soonpaa M. H., Kim K. K., Pajak L., Franklin M., Field L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996 Nov;271(5 Pt 2):H2183–H2189. doi: 10.1152/ajpheart.1996.271.5.H2183. [DOI] [PubMed] [Google Scholar]
  39. Soonpaa M. H., Koh G. Y., Klug M. G., Field L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994 Apr 1;264(5155):98–101. doi: 10.1126/science.8140423. [DOI] [PubMed] [Google Scholar]
  40. Stratford-Perricaudet L. D., Makeh I., Perricaudet M., Briand P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest. 1992 Aug;90(2):626–630. doi: 10.1172/JCI115902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Subramaniam A., Gulick J., Neumann J., Knotts S., Robbins J. Transgenic analysis of the thyroid-responsive elements in the alpha-cardiac myosin heavy chain gene promoter. J Biol Chem. 1993 Feb 25;268(6):4331–4336. [PubMed] [Google Scholar]
  42. Subramaniam A., Jones W. K., Gulick J., Wert S., Neumann J., Robbins J. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J Biol Chem. 1991 Dec 25;266(36):24613–24620. [PubMed] [Google Scholar]
  43. Taketo M., Schroeder A. C., Mobraaten L. E., Gunning K. B., Hanten G., Fox R. R., Roderick T. H., Stewart C. L., Lilly F., Hansen C. T. FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2065–2069. doi: 10.1073/pnas.88.6.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Van Deursen J., Fornerod M., Van Rees B., Grosveld G. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7376–7380. doi: 10.1073/pnas.92.16.7376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Walters M. C., Magis W., Fiering S., Eidemiller J., Scalzo D., Groudine M., Martin D. I. Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 1996 Jan 15;10(2):185–195. doi: 10.1101/gad.10.2.185. [DOI] [PubMed] [Google Scholar]
  46. Wang P., Anton M., Graham F. L., Bacchetti S. High frequency recombination between loxP sites in human chromosomes mediated by an adenovirus vector expressing Cre recombinase. Somat Cell Mol Genet. 1995 Nov;21(6):429–441. doi: 10.1007/BF02310209. [DOI] [PubMed] [Google Scholar]
  47. Wang Y., Krushel L. A., Edelman G. M. Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3932–3936. doi: 10.1073/pnas.93.9.3932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yang Y., Jooss K. U., Su Q., Ertl H. C., Wilson J. M. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 1996 Feb;3(2):137–144. [PubMed] [Google Scholar]
  49. Yang Y., Su Q., Grewal I. S., Schilz R., Flavell R. A., Wilson J. M. Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J Virol. 1996 Sep;70(9):6370–6377. doi: 10.1128/jvi.70.9.6370-6377.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yang Y., Trinchieri G., Wilson J. M. Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nat Med. 1995 Sep;1(9):890–893. doi: 10.1038/nm0995-890. [DOI] [PubMed] [Google Scholar]
  51. Yang Y., Wilson J. M. CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science. 1996 Sep 27;273(5283):1862–1864. doi: 10.1126/science.273.5283.1862. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES