Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 15;100(2):253–258. doi: 10.1172/JCI119529

Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces.

L J Dell'Italia 1, Q C Meng 1, E Balcells 1, C C Wei 1, R Palmer 1, G R Hageman 1, J Durand 1, G H Hankes 1, S Oparil 1
PMCID: PMC508186  PMID: 9218500

Abstract

Angiotensin-converting enzyme inhibitors have beneficial effects that are presumably mediated by decreased angiotensin II (ANG II) production. In this study, we measure for the first time ANG I and ANG II levels in the interstitial fluid (ISF) space of the heart. ISF and aortic plasma ANG I and II levels were obtained at baseline, during intravenous infusion of ANG I (5 microM, 0.1 ml/min, 60 min), and during ANG I + the angiotensin-converting enzyme inhibitor captopril (cap) (2.5 mM, 0.1 ml/min, 60 min) in six anesthetized open-chested dogs. ISF samples were obtained using microdialysis probes inserted into the left ventricular myocardium (3-4 probes/dog). ANG I increased mean arterial pressure from 102+/-3 (SEM) to 124+/-3 mmHg (P < 0.01); addition of cap decreased MAP to 95+/-3 mmHg (P < 0.01). ANG I infusion increased aortic plasma ANG I and ANG II (pg/ml) (ANG I = 101+/-129 to 370+/-158 pg/ml, P < 0.01; and ANG II = 22+/-40 to 466+/-49, P < 0.01); addition of cap further increased ANG I (1,790+/-158, P < 0.01) and decreased ANG II (33+/-49, P < 0.01). ISF ANG I and ANG II levels (pg/ml) were > 100-fold higher than plasma levels, and did not change from baseline (8,122+/-528 and 6,333+/-677), during ANG I (8,269+/-502 and 6, 139+/-695) or ANG I + cap (8,753+/-502 and 5,884+/-695). The finding of very high ANG I and ANG II levels in the ISF vs. intravascular space that are not affected by IV ANG I or cap suggests that ANG II production and/or degradation in the heart is compartmentalized and mediated by different enzymatic mechanisms in the interstitial and intravascular spaces.

Full Text

The Full Text of this article is available as a PDF (174.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailie M. D., Rector F. C., Jr, Seldin D. W. Angiotensin II in arterial and renal venous plasma and renal lymph in the dog. J Clin Invest. 1971 Jan;50(1):119–126. doi: 10.1172/JCI106465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker K. M., Chernin M. I., Wixson S. K., Aceto J. F. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol. 1990 Aug;259(2 Pt 2):H324–H332. doi: 10.1152/ajpheart.1990.259.2.H324. [DOI] [PubMed] [Google Scholar]
  3. Balcells E., Meng Q. C., Hageman G. R., Palmer R. W., Durand J. N., Dell'Italia L. J. Angiotensin II formation in dog heart is mediated by different pathways in vivo and in vitro. Am J Physiol. 1996 Aug;271(2 Pt 2):H417–H421. doi: 10.1152/ajpheart.1996.271.2.H417. [DOI] [PubMed] [Google Scholar]
  4. Boer P. H., Ruzicka M., Lear W., Harmsen E., Rosenthal J., Leenen F. H. Stretch-mediated activation of cardiac renin gene. Am J Physiol. 1994 Oct;267(4 Pt 2):H1630–H1636. doi: 10.1152/ajpheart.1994.267.4.H1630. [DOI] [PubMed] [Google Scholar]
  5. Brasch H., Sieroslawski L., Dominiak P. Angiotensin II increases norepinephrine release from atria by acting on angiotensin subtype 1 receptors. Hypertension. 1993 Nov;22(5):699–704. doi: 10.1161/01.hyp.22.5.699. [DOI] [PubMed] [Google Scholar]
  6. Danser A. H., Koning M. M., Admiraal P. J., Derkx F. H., Verdouw P. D., Schalekamp M. A. Metabolism of angiotensin I by different tissues in the intact animal. Am J Physiol. 1992 Aug;263(2 Pt 2):H418–H428. doi: 10.1152/ajpheart.1992.263.2.H418. [DOI] [PubMed] [Google Scholar]
  7. Dell'Italia L. J., Meng Q. C., Balcells E., Straeter-Knowlen I. M., Hankes G. H., Dillon R., Cartee R. E., Orr R., Bishop S. P., Oparil S. Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol. 1995 Dec;269(6 Pt 2):H2065–H2073. doi: 10.1152/ajpheart.1995.269.6.H2065. [DOI] [PubMed] [Google Scholar]
  8. Dzau V. J. Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens. 1989 Dec;7(12):933–936. doi: 10.1097/00004872-198912000-00001. [DOI] [PubMed] [Google Scholar]
  9. Everett A. D., Tufro-McReddie A., Fisher A., Gomez R. A. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Hypertension. 1994 May;23(5):587–592. doi: 10.1161/01.hyp.23.5.587. [DOI] [PubMed] [Google Scholar]
  10. Hoit B. D., Shao Y., Kinoshita A., Gabel M., Husain A., Walsh R. A. Effects of angiotensin II generated by an angiotensin converting enzyme-independent pathway on left ventricular performance in the conscious baboon. J Clin Invest. 1995 Apr;95(4):1519–1527. doi: 10.1172/JCI117824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iwai N., Shimoike H., Kinoshita M. Cardiac renin-angiotensin system in the hypertrophied heart. Circulation. 1995 Nov 1;92(9):2690–2696. doi: 10.1161/01.cir.92.9.2690. [DOI] [PubMed] [Google Scholar]
  12. Johnston C. I. Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling. Hypertension. 1994 Feb;23(2):258–268. doi: 10.1161/01.hyp.23.2.258. [DOI] [PubMed] [Google Scholar]
  13. Kinoshita A., Urata H., Bumpus F. M., Husain A. Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem. 1991 Oct 15;266(29):19192–19197. [PubMed] [Google Scholar]
  14. Meng Q. C., Balcells E., Dell'Italia L., Durand J., Oparil S. Sensitive method for quantitation of angiotensin-converting enzyme (ACE) activity in tissue. Biochem Pharmacol. 1995 Oct 26;50(9):1445–1450. doi: 10.1016/0006-2952(95)02038-1. [DOI] [PubMed] [Google Scholar]
  15. Meng Q. C., Durand J., Chen Y. F., Oparil S. Effects of dietary salt on angiotensin peptides in kidney. J Am Soc Nephrol. 1995 Oct;6(4):1209–1215. doi: 10.1681/ASN.V641209. [DOI] [PubMed] [Google Scholar]
  16. Meng Q. C., Durand J., Chen Y. F., Oparil S. Simplified method for quantitation of angiotensin peptides in tissue. J Chromatogr. 1993 Apr 21;614(1):19–25. doi: 10.1016/0378-4347(93)80219-t. [DOI] [PubMed] [Google Scholar]
  17. Nees S., Herzog V., Becker B. F., Böck M., Des Rosiers Ch, Gerlach E. The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol. 1985 Sep-Oct;80(5):515–529. doi: 10.1007/BF01907915. [DOI] [PubMed] [Google Scholar]
  18. Noda K., Sasaguri M., Ideishi M., Ikeda M., Arakawa K. Role of locally formed angiotensin II and bradykinin in the reduction of myocardial infarct size in dogs. Cardiovasc Res. 1993 Feb;27(2):334–340. doi: 10.1093/cvr/27.2.334. [DOI] [PubMed] [Google Scholar]
  19. Olsson R. A., Bünger R. Metabolic control of coronary blood flow. Prog Cardiovasc Dis. 1987 Mar-Apr;29(5):369–387. doi: 10.1016/0033-0620(87)90003-x. [DOI] [PubMed] [Google Scholar]
  20. Pfeffer M. A., Braunwald E., Moyé L. A., Basta L., Brown E. J., Jr, Cuddy T. E., Davis B. R., Geltman E. M., Goldman S., Flaker G. C. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992 Sep 3;327(10):669–677. doi: 10.1056/NEJM199209033271001. [DOI] [PubMed] [Google Scholar]
  21. Pieruzzi F., Abassi Z. A., Keiser H. R. Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation. 1995 Nov 15;92(10):3105–3112. doi: 10.1161/01.cir.92.10.3105. [DOI] [PubMed] [Google Scholar]
  22. Pitt B., Segal R., Martinez F. A., Meurers G., Cowley A. J., Thomas I., Deedwania P. C., Ney D. E., Snavely D. B., Chang P. I. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE) Lancet. 1997 Mar 15;349(9054):747–752. doi: 10.1016/s0140-6736(97)01187-2. [DOI] [PubMed] [Google Scholar]
  23. Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993 Sep;73(3):413–423. doi: 10.1161/01.res.73.3.413. [DOI] [PubMed] [Google Scholar]
  24. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  25. Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shabetai R. Pericardial and cardiac pressure. Circulation. 1988 Jan;77(1):1–5. doi: 10.1161/01.cir.77.1.1. [DOI] [PubMed] [Google Scholar]
  27. Siragy H. M., Howell N. L., Ragsdale N. V., Carey R. M. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition. Hypertension. 1995 May;25(5):1021–1024. doi: 10.1161/01.hyp.25.5.1021. [DOI] [PubMed] [Google Scholar]
  28. Urata H., Boehm K. D., Philip A., Kinoshita A., Gabrovsek J., Bumpus F. M., Husain A. Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J Clin Invest. 1993 Apr;91(4):1269–1281. doi: 10.1172/JCI116325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Urata H., Healy B., Stewart R. W., Bumpus F. M., Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res. 1990 Apr;66(4):883–890. doi: 10.1161/01.res.66.4.883. [DOI] [PubMed] [Google Scholar]
  30. Van Wylen D. G., Park T. S., Rubio R., Berne R. M. Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. J Cereb Blood Flow Metab. 1986 Oct;6(5):522–528. doi: 10.1038/jcbfm.1986.97. [DOI] [PubMed] [Google Scholar]
  31. Van Wylen D. G., Willis J., Sodhi J., Weiss R. J., Lasley R. D., Mentzer R. M., Jr Cardiac microdialysis to estimate interstitial adenosine and coronary blood flow. Am J Physiol. 1990 Jun;258(6 Pt 2):H1642–H1649. doi: 10.1152/ajpheart.1990.258.6.H1642. [DOI] [PubMed] [Google Scholar]
  32. Wang T., Mentzer R. M., Jr, Van Wylen D. G. Interstitial adenosine with dipyridamole: effect of adenosine receptor blockade and adenosine deaminase. Am J Physiol. 1992 Aug;263(2 Pt 2):H552–H558. doi: 10.1152/ajpheart.1992.263.2.H552. [DOI] [PubMed] [Google Scholar]
  33. Wang T., Sodhi J., Mentzer R. M., Jr, Van Wylen D. G. Changes in interstitial adenosine during hypoxia: relationship to oxygen supply:demand imbalance, and effects of adenosine deaminase. Cardiovasc Res. 1994 Sep;28(9):1320–1325. doi: 10.1093/cvr/28.9.1320. [DOI] [PubMed] [Google Scholar]
  34. Yamazaki T., Komuro I., Kudoh S., Zou Y., Shiojima I., Mizuno T., Takano H., Hiroi Y., Ueki K., Tobe K. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res. 1995 Aug;77(2):258–265. doi: 10.1161/01.res.77.2.258. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES