Abstract
The angiotensin AT2 receptor modulates renal production of cyclic guanosine 3',5'-monophosphate (cGMP; J. Clin. Invest. 1996. 97:1978-1982). In the present study, we hypothesized that angiotensin II (Ang II) acts at the AT2 receptor to stimulate renal production of nitric oxide leading to the previously observed increase in cGMP. Using a microdialysis technique, we monitored changes in renal interstitial fluid (RIF) cGMP in response to intravenous infusion of the AT2 receptor antagonist PD 123319 (PD), the AT1 receptor antagonist Losartan, the nitric oxide synthase (NOS) inhibitor nitro--arginine-methyl-ester (-NAME), the specific neural NOS inhibitor 7-nitroindazole (7-NI), or Ang II individually or combined in conscious rats during low or normal sodium balance. Sodium depletion significantly increased RIF cGMP. During sodium depletion, both PD and -NAME caused a similar decrease in RIF cGMP. Combined administration of PD and -NAME decreased RIF cGMP to levels observed with PD or -NAME alone or during normal sodium intake. During normal sodium intake, Ang II caused a twofold increase in RIF cGMP. Neither PD nor -NAME, individually or combined, changed RIF cGMP. Combined administration of Ang II and either PD or -NAME produced a significant decrease in RIF cGMP compared with that induced by Ang II alone. Combined administration of Ang II, PD, and -NAME blocked the increase in RIF cGMP produced by Ang II alone. During sodium depletion, 7-NI decreased RIF cGMP, but the reduction of cGMP in response to PD alone or PD combined with 7-NI was greater than with 7-NI alone. During normal sodium intake, 7-NI blocked the Ang II-induced increase in RIF cGMP. PD alone or combined with 7-NI produced a greater inhibition of cGMP than did 7-NI alone. During sodium depletion, 7-NI (partially) and -NAME (completely) inhibited RIF cGMP responses to -arginine. These data demonstrate that activation of the renin- angiotensin system during sodium depletion increases renal nitric oxide production through stimulation by Ang II at the angiotensin AT2 receptor. This response is partially mediated by neural NOS, but other NOS isoforms also contribute to nitric oxide production by this pathway.
Full Text
The Full Text of this article is available as a PDF (198.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachmann S., Bosse H. M., Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol. 1995 May;268(5 Pt 2):F885–F898. doi: 10.1152/ajprenal.1995.268.5.F885. [DOI] [PubMed] [Google Scholar]
- Baylis C., Qiu C. Importance of nitric oxide in the control of renal hemodynamics. Kidney Int. 1996 Jun;49(6):1727–1731. doi: 10.1038/ki.1996.256. [DOI] [PubMed] [Google Scholar]
- Boulanger C. M., Caputo L., Lévy B. I. Endothelial AT1-mediated release of nitric oxide decreases angiotensin II contractions in rat carotid artery. Hypertension. 1995 Nov;26(5):752–757. doi: 10.1161/01.hyp.26.5.752. [DOI] [PubMed] [Google Scholar]
- Conger J., Robinette J., Villar A., Raij L., Shultz P. Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats. J Clin Invest. 1995 Jul;96(1):631–638. doi: 10.1172/JCI118078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest. 1992 Apr;89(4):1248–1256. doi: 10.1172/JCI115709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng X., Welch W. J., Wilcox C. S. Role of nitric oxide in short-term and prolonged effects of angiotensin II on renal hemodynamics. Hypertension. 1996 May;27(5):1173–1179. doi: 10.1161/01.hyp.27.5.1173. [DOI] [PubMed] [Google Scholar]
- Ernsberger P., Zhou J., Damon T. H., Douglas J. G. Angiotensin II receptor subtypes in cultured rat renal mesangial cells. Am J Physiol. 1992 Sep;263(3 Pt 2):F411–F416. doi: 10.1152/ajprenal.1992.263.3.F411. [DOI] [PubMed] [Google Scholar]
- Lau K. S., Nakashima O., Aalund G. R., Hogarth L., Ujiie K., Yuen J., Star R. A. TNF-alpha and IFN-gamma induce expression of nitric oxide synthase in cultured rat medullary interstitial cells. Am J Physiol. 1995 Aug;269(2 Pt 2):F212–F217. doi: 10.1152/ajprenal.1995.269.2.F212. [DOI] [PubMed] [Google Scholar]
- Lo M., Liu K. L., Lantelme P., Sassard J. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. J Clin Invest. 1995 Mar;95(3):1394–1397. doi: 10.1172/JCI117792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macari D., Bottari S., Whitebread S., De Gasparo M., Levens N. Renal actions of the selective angiotensin AT2 receptor ligands CGP 42112B and PD 123319 in the sodium-depleted rat. Eur J Pharmacol. 1993 Nov 2;249(1):85–93. doi: 10.1016/0014-2999(93)90665-5. [DOI] [PubMed] [Google Scholar]
- Mayer B., Klatt P., Werner E. R., Schmidt K. Identification of imidazole as L-arginine-competitive inhibitor of porcine brain nitric oxide synthase. FEBS Lett. 1994 Aug 22;350(2-3):199–202. doi: 10.1016/0014-5793(94)00766-7. [DOI] [PubMed] [Google Scholar]
- Mohaupt M. G., Elzie J. L., Ahn K. Y., Clapp W. L., Wilcox C. S., Kone B. C. Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney Int. 1994 Sep;46(3):653–665. doi: 10.1038/ki.1994.318. [DOI] [PubMed] [Google Scholar]
- Moore P. K., Babbedge R. C., Wallace P., Gaffen Z. A., Hart S. L. 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol. 1993 Feb;108(2):296–297. doi: 10.1111/j.1476-5381.1993.tb12798.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navar L. G., Rosivall L. Contribution of the renin-angiotensin system to the control of intrarenal hemodynamics. Kidney Int. 1984 Jun;25(6):857–868. doi: 10.1038/ki.1984.102. [DOI] [PubMed] [Google Scholar]
- Sigmon D. H., Newman J. M., Beierwaltes W. H. Angiotensin II: endothelium-derived nitric oxide interaction in conscious rats. J Am Soc Nephrol. 1994 Mar;4(9):1675–1682. doi: 10.1681/ASN.V491675. [DOI] [PubMed] [Google Scholar]
- Siragy H. M., Carey R. M. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3', 5'-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest. 1996 Apr 15;97(8):1978–1982. doi: 10.1172/JCI118630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siragy H. M., Howell N. L., Ragsdale N. V., Carey R. M. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition. Hypertension. 1995 May;25(5):1021–1024. doi: 10.1161/01.hyp.25.5.1021. [DOI] [PubMed] [Google Scholar]
- Siragy H. M., Ibrahim M. M., Jaffa A. A., Mayfield R., Margolius H. S. Rat renal interstitial bradykinin, prostaglandin E2, and cyclic guanosine 3',5'-monophosphate. Effects of altered sodium intake. Hypertension. 1994 Jun;23(6 Pt 2):1068–1070. doi: 10.1161/01.hyp.23.6.1068. [DOI] [PubMed] [Google Scholar]
- Siragy H. M., Jaffa A. A., Margolius H. S. Stimulation of renal interstitial bradykinin by sodium depletion. Am J Hypertens. 1993 Oct;6(10):863–866. doi: 10.1093/ajh/6.10.863. [DOI] [PubMed] [Google Scholar]
- Tojo A., Madsen K. M., Wilcox C. S. Expression of immunoreactive nitric oxide synthase isoforms in rat kidney. Effects of dietary salt and losartan. Jpn Heart J. 1995 May;36(3):389–398. doi: 10.1536/ihj.36.389. [DOI] [PubMed] [Google Scholar]