Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 15;100(2):339–349. doi: 10.1172/JCI119539

Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire.

P A Muraro 1, M Vergelli 1, M Kalbus 1, D E Banks 1, J W Nagle 1, L R Tranquill 1, G T Nepom 1, W E Biddison 1, H F McFarland 1, R Martin 1
PMCID: PMC508196  PMID: 9218510

Abstract

The pathogenesis of multiple sclerosis (MS) is currently ascribed in part to a T cell-mediated process targeting myelin components. The T cell response to one candidate autoantigen, myelin basic protein (MBP), in the context of HLA-DR15Dw2, has been previously studied in detail. However, the characteristics of cellular immunity in the context of other MS-associated HLA-DR haplotypes are scarcely known. MBP-specific T cell lines (TCL) were generated from HLA-DR4 (B1*0401)-positive MS subjects. Out of 275 MBP-specific TCL, 178 (64. 7%) specifically recognized region MBP(111-129), predominantly in the context of DRB1*0401. The major T cell epitope for MBP recognition corresponded to residues MBP(116-123). These TCL expressed disparate profiles of cytokine secretion and cytotoxicity. T cell receptor analysis, on the other hand, revealed a strikingly limited heterogeneity of rearrangements. In contrast to MBP(81-99), which binds with high affinity to HLA-DR15 and is recognized by a diverse T cell repertoire, MBP(111-129) binds weakly to DRB1*0401, suggesting that only high affinity T cell receptors might be able to efficiently engage such unstable MHC/peptide complexes, thus accounting for the T cell receptor restriction we observed. This study provides new insight about MBP recognition and proposes an alternative mechanism for immunodominance of self-antigen T cell epitopes in humans.

Full Text

The Full Text of this article is available as a PDF (247.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arden B., Clark S. P., Kabelitz D., Mak T. W. Human T-cell receptor variable gene segment families. Immunogenetics. 1995;42(6):455–500. doi: 10.1007/BF00172176. [DOI] [PubMed] [Google Scholar]
  2. Ashton-Rickardt P. G., Tonegawa S. A differential-avidity model for T-cell selection. Immunol Today. 1994 Aug;15(8):362–366. doi: 10.1016/0167-5699(94)90174-0. [DOI] [PubMed] [Google Scholar]
  3. Ben-Nun A., Liblau R. S., Cohen L., Lehmann D., Tournier-Lasserve E., Rosenzweig A., Zhang J. W., Raus J. C., Bach M. A. Restricted T-cell receptor V beta gene usage by myelin basic protein-specific T-cell clones in multiple sclerosis: predominant genes vary in individuals. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2466–2470. doi: 10.1073/pnas.88.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Nun A., Otmy H., Cohen I. R. Genetic control of autoimmune encephalomyelitis and recognition of the critical nonapeptide moiety of myelin basic protein in guinea pigs are exerted through interaction of lymphocytes and macrophages. Eur J Immunol. 1981 Apr;11(4):311–316. doi: 10.1002/eji.1830110409. [DOI] [PubMed] [Google Scholar]
  5. Bernard C. C. Experimental autoimmune encephalomyelitis in mice: genetic control of susceptibility. J Immunogenet. 1976 Aug;3(4):263–274. doi: 10.1111/j.1744-313x.1976.tb00583.x. [DOI] [PubMed] [Google Scholar]
  6. Bodmer J. G., Marsh S. G., Albert E. D., Bodmer W. F., Bontrop R. E., Charron D., Dupont B., Erlich H. A., Mach B., Mayr W. R. Nomenclature for factors of the HLA system, 1995. Eur J Immunogenet. 1995 Aug;22(4):335–360. doi: 10.1111/j.1744-313x.1995.tb00249.x. [DOI] [PubMed] [Google Scholar]
  7. Brocke S., Gijbels K., Allegretta M., Ferber I., Piercy C., Blankenstein T., Martin R., Utz U., Karin N., Mitchell D. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature. 1996 Jan 25;379(6563):343–346. doi: 10.1038/379343a0. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Chou Y. K., Henderikx P., Vainiene M., Whitham R., Bourdette D., Chou C. H., Hashim G., Offner H., Vandenbark A. A. Specificity of human T cell clones reactive to immunodominant epitopes of myelin basic protein. J Neurosci Res. 1991 Feb;28(2):280–290. doi: 10.1002/jnr.490280215. [DOI] [PubMed] [Google Scholar]
  10. Chou Y. K., Vainiene M., Whitham R., Bourdette D., Chou C. H., Hashim G., Offner H., Vandenbark A. A. Response of human T lymphocyte lines to myelin basic protein: association of dominant epitopes with HLA class II restriction molecules. J Neurosci Res. 1989 Jun;23(2):207–216. doi: 10.1002/jnr.490230211. [DOI] [PubMed] [Google Scholar]
  11. Deibler G. E., Martenson R. E., Kies M. W. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep Biochem. 1972;2(2):139–165. doi: 10.1080/00327487208061467. [DOI] [PubMed] [Google Scholar]
  12. Demotz S., Matricardi P. M., Irle C., Panina P., Lanzavecchia A., Corradin G. Processing of tetanus toxin by human antigen-presenting cells. Evidence for donor and epitope-specific processing pathways. J Immunol. 1989 Dec 15;143(12):3881–3886. [PubMed] [Google Scholar]
  13. Dong R. P., Kimura A., Hashimoto H., Akizuki M., Nishimura Y., Sasazuki T. Difference in HLA-linked genetic background between mixed connective tissue disease and systemic lupus erythematosus. Tissue Antigens. 1993 Jan;41(1):20–25. doi: 10.1111/j.1399-0039.1993.tb01972.x. [DOI] [PubMed] [Google Scholar]
  14. Fairchild P. J., Wildgoose R., Atherton E., Webb S., Wraith D. C. An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. Int Immunol. 1993 Sep;5(9):1151–1158. doi: 10.1093/intimm/5.9.1151. [DOI] [PubMed] [Google Scholar]
  15. Gasser D. L., Newlin C. M., Palm J., Gonatas N. K. Genetic control of susceptibility to experimental allergic encephalomyelitis in rats. Science. 1973 Aug 31;181(4102):872–873. doi: 10.1126/science.181.4102.872. [DOI] [PubMed] [Google Scholar]
  16. Giegerich G., Pette M., Meinl E., Epplen J. T., Wekerle H., Hinkkanen A. Diversity of T cell receptor alpha and beta chain genes expressed by human T cells specific for similar myelin basic protein peptide/major histocompatibility complexes. Eur J Immunol. 1992 Mar;22(3):753–758. doi: 10.1002/eji.1830220319. [DOI] [PubMed] [Google Scholar]
  17. Grasso M. G., Cutrupi F., Bernardi S., Trabace S., Pozzilli C., Cappellacci S., Fieschi C. HLA determinants in familial multiple sclerosis. Neuroepidemiology. 1992;11(2):85–89. doi: 10.1159/000110916. [DOI] [PubMed] [Google Scholar]
  18. Hafler D. A., Saadeh M. G., Kuchroo V. K., Milford E., Steinman L. TCR usage in human and experimental demyelinating disease. Immunol Today. 1996 Apr;17(4):152–159. doi: 10.1016/0167-5699(96)80611-6. [DOI] [PubMed] [Google Scholar]
  19. Hall M. A., Lanchbury J. S. Healthy human T-cell receptor beta-chain repertoire. Quantitative analysis and evidence for J beta-related effects on CDR3 structure and diversity. Hum Immunol. 1995 Jul;43(3):207–218. doi: 10.1016/0198-8859(95)00013-t. [DOI] [PubMed] [Google Scholar]
  20. Hammer J., Gallazzi F., Bono E., Karr R. W., Guenot J., Valsasnini P., Nagy Z. A., Sinigaglia F. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med. 1995 May 1;181(5):1847–1855. doi: 10.1084/jem.181.5.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hashim G., Vandenbark A. A., Gold D. P., Diamanduros T., Offner H. T cell lines specific for an immunodominant epitope of human basic protein define an encephalitogenic determinant for experimental autoimmune encephalomyelitis-resistant LOU/M rats. J Immunol. 1991 Jan 15;146(2):515–520. [PubMed] [Google Scholar]
  22. Hauser S. L., Fleischnick E., Weiner H. L., Marcus D., Awdeh Z., Yunis E. J., Alper C. A. Extended major histocompatibility complex haplotypes in patients with multiple sclerosis. Neurology. 1989 Feb;39(2 Pt 1):275–277. doi: 10.1212/wnl.39.2.275. [DOI] [PubMed] [Google Scholar]
  23. Hawes G. E., Struyk L., Godthelp B. C., van den Elsen P. J. Limited restriction in the TCR-alpha beta V region usage of antigen-specific clones. Recognition of myelin basic protein (amino acids 84-102) and Mycobacterium bovis 65-kDa heat shock protein (amino acids 3-13) by T cell clones established from peripheral blood mononuclear cells of monozygotic twins and HLA-identical individuals. J Immunol. 1995 Jan 15;154(2):555–566. [PubMed] [Google Scholar]
  24. Heber-Katz E., Acha-Orbea H. The V-region disease hypothesis: evidence from autoimmune encephalomyelitis. Immunol Today. 1989 May;10(5):164–169. doi: 10.1016/0167-5699(89)90174-6. [DOI] [PubMed] [Google Scholar]
  25. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jingwu Z., Medaer R., Hashim G. A., Chin Y., van den Berg-Loonen E., Raus J. C. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann Neurol. 1992 Sep;32(3):330–338. doi: 10.1002/ana.410320305. [DOI] [PubMed] [Google Scholar]
  27. Joosten I., Wauben M. H., Holewijn M. C., Reske K., Pedersen L. O., Roosenboom C. F., Hensen E. J., van Eden W., Buus S. Direct binding of autoimmune disease related T cell epitopes to purified Lewis rat MHC class II molecules. Int Immunol. 1994 May;6(5):751–759. doi: 10.1093/intimm/6.5.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Koop B. F., Rowen L., Wang K., Kuo C. L., Seto D., Lenstra J. A., Howard S., Shan W., Deshpande P., Hood L. The human T-cell receptor TCRAC/TCRDC (C alpha/C delta) region: organization, sequence, and evolution of 97.6 kb of DNA. Genomics. 1994 Feb;19(3):478–493. doi: 10.1006/geno.1994.1097. [DOI] [PubMed] [Google Scholar]
  29. Kovats S., Drover S., Marshall W. H., Freed D., Whiteley P. E., Nepom G. T., Blum J. S. Coordinate defects in human histocompatibility leukocyte antigen class II expression and antigen presentation in bare lymphocyte syndrome. J Exp Med. 1994 Jun 1;179(6):2017–2022. doi: 10.1084/jem.179.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kropshofer H., Bohlinger I., Max H., Kalbacher H. Self and foreign peptides interact with intact and disassembled MHC class II antigen HLA-DR via tryptophan pockets. Biochemistry. 1991 Sep 24;30(38):9177–9187. doi: 10.1021/bi00102a008. [DOI] [PubMed] [Google Scholar]
  31. Kropshofer H., Max H., Halder T., Kalbus M., Muller C. A., Kalbacher H. Self-peptides from four HLA-DR alleles share hydrophobic anchor residues near the NH2-terminal including proline as a stop signal for trimming. J Immunol. 1993 Nov 1;151(9):4732–4742. [PubMed] [Google Scholar]
  32. Ling N., Esch F., Böhlen P., Brazeau P., Wehrenberg W. B., Guillemin R. Isolation, primary structure, and synthesis of human hypothalamic somatocrinin: growth hormone-releasing factor. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4302–4306. doi: 10.1073/pnas.81.14.4302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Liu G. Y., Fairchild P. J., Smith R. M., Prowle J. R., Kioussis D., Wraith D. C. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity. 1995 Oct;3(4):407–415. doi: 10.1016/1074-7613(95)90170-1. [DOI] [PubMed] [Google Scholar]
  34. Marrosu M. G., Muntoni F., Murru M. R., Spinicci G., Pischedda M. P., Goddi F., Cossu P., Pirastu M. Sardinian multiple sclerosis is associated with HLA-DR4: a serologic and molecular analysis. Neurology. 1988 Nov;38(11):1749–1753. doi: 10.1212/wnl.38.11.1749. [DOI] [PubMed] [Google Scholar]
  35. Martin R., Howell M. D., Jaraquemada D., Flerlage M., Richert J., Brostoff S., Long E. O., McFarlin D. E., McFarland H. F. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med. 1991 Jan 1;173(1):19–24. doi: 10.1084/jem.173.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Martin R., Jaraquemada D., Flerlage M., Richert J., Whitaker J., Long E. O., McFarlin D. E., McFarland H. F. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol. 1990 Jul 15;145(2):540–548. [PubMed] [Google Scholar]
  37. Martin R., McFarland H. F. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci. 1995;32(2):121–182. doi: 10.3109/10408369509084683. [DOI] [PubMed] [Google Scholar]
  38. Martin R., McFarland H. F., McFarlin D. E. Immunological aspects of demyelinating diseases. Annu Rev Immunol. 1992;10:153–187. doi: 10.1146/annurev.iy.10.040192.001101. [DOI] [PubMed] [Google Scholar]
  39. Martin R., Utz U., Coligan J. E., Richert J. R., Flerlage M., Robinson E., Stone R., Biddison W. E., McFarlin D. E., McFarland H. F. Diversity in fine specificity and T cell receptor usage of the human CD4+ cytotoxic T cell response specific for the immunodominant myelin basic protein peptide 87-106. J Immunol. 1992 Mar 1;148(5):1359–1366. [PubMed] [Google Scholar]
  40. Martin R., Voskuhl R., Flerlage M., McFarlin D. E., McFarland H. F. Myelin basic protein-specific T-cell responses in identical twins discordant or concordant for multiple sclerosis. Ann Neurol. 1993 Oct;34(4):524–535. doi: 10.1002/ana.410340405. [DOI] [PubMed] [Google Scholar]
  41. Mason K., Denney D. W., Jr, McConnell H. M. Myelin basic protein peptide complexes with the class II MHC molecules I-Au and I-Ak form and dissociate rapidly at neutral pH. J Immunol. 1995 May 15;154(10):5216–5227. [PubMed] [Google Scholar]
  42. Mason K., McConnell H. M. Short-lived complexes between myelin basic protein peptides and IAk. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12463–12466. doi: 10.1073/pnas.91.26.12463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Meinl E., Weber F., Drexler K., Morelle C., Ott M., Saruhan-Direskeneli G., Goebels N., Ertl B., Jechart G., Giegerich G. Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest. 1993 Dec;92(6):2633–2643. doi: 10.1172/JCI116879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moss P. A., Rosenberg W. M., Zintzaras E., Bell J. I. Characterization of the human T cell receptor alpha-chain repertoire and demonstration of a genetic influence on V alpha usage. Eur J Immunol. 1993 May;23(5):1153–1159. doi: 10.1002/eji.1830230526. [DOI] [PubMed] [Google Scholar]
  45. Nepom G. T., Erlich H. MHC class-II molecules and autoimmunity. Annu Rev Immunol. 1991;9:493–525. doi: 10.1146/annurev.iy.09.040191.002425. [DOI] [PubMed] [Google Scholar]
  46. Nicolle M. W., Hawke S., Willcox N., Vincent A. Differences in processing of an autoantigen by DR4:Dw4.2 and DR4:Dw14.2 antigen-presenting cells. Eur J Immunol. 1995 Jul;25(7):2119–2122. doi: 10.1002/eji.1830250749. [DOI] [PubMed] [Google Scholar]
  47. Olerup O., Hillert J., Fredrikson S., Olsson T., Kam-Hansen S., Möller E., Carlsson B., Wallin J. Primarily chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7113–7117. doi: 10.1073/pnas.86.18.7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Olsson T., Sun J., Hillert J., Höjeberg B., Ekre H. P., Andersson G., Olerup O., Link H. Increased numbers of T cells recognizing multiple myelin basic protein epitopes in multiple sclerosis. Eur J Immunol. 1992 Apr;22(4):1083–1087. doi: 10.1002/eji.1830220431. [DOI] [PubMed] [Google Scholar]
  49. Olsson T., Zhi W. W., Höjeberg B., Kostulas V., Jiang Y. P., Anderson G., Ekre H. P., Link H. Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest. 1990 Sep;86(3):981–985. doi: 10.1172/JCI114800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ota K., Matsui M., Milford E. L., Mackin G. A., Weiner H. L., Hafler D. A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990 Jul 12;346(6280):183–187. doi: 10.1038/346183a0. [DOI] [PubMed] [Google Scholar]
  51. Pette M., Fujita K., Kitze B., Whitaker J. N., Albert E., Kappos L., Wekerle H. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology. 1990 Nov;40(11):1770–1776. doi: 10.1212/wnl.40.11.1770. [DOI] [PubMed] [Google Scholar]
  52. Richert J. R., Reuben-Burnside C. A., Deibler G. E., Kies M. W. Peptide specificities of myelin basic protein-reactive human T-cell clones. Neurology. 1988 May;38(5):739–742. doi: 10.1212/wnl.38.5.739. [DOI] [PubMed] [Google Scholar]
  53. Richert J. R., Robinson E. D., Deibler G. E., Martenson R. E., Dragovic L. J., Kies M. W. Evidence for multiple human T cell recognition sites on myelin basic protein. J Neuroimmunol. 1989 Jun;23(1):55–66. doi: 10.1016/0165-5728(89)90073-8. [DOI] [PubMed] [Google Scholar]
  54. Rock E. P., Sibbald P. R., Davis M. M., Chien Y. H. CDR3 length in antigen-specific immune receptors. J Exp Med. 1994 Jan 1;179(1):323–328. doi: 10.1084/jem.179.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Salvetti M., Ristori G., D'Amato M., Buttinelli C., Falcone M., Fieschi C., Wekerle H., Pozzilli C. Predominant and stable T cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. Eur J Immunol. 1993 Jun;23(6):1232–1239. doi: 10.1002/eji.1830230606. [DOI] [PubMed] [Google Scholar]
  56. Sanjeevi C. B., Hök P., Landin-Olsson M., Kockum I., Dahlquist G., Lybrand T. P., Lernmark A. DR4 subtypes and their molecular properties in a population-based study of Swedish childhood diabetes. Tissue Antigens. 1996 Apr;47(4):275–283. doi: 10.1111/j.1399-0039.1996.tb02554.x. [DOI] [PubMed] [Google Scholar]
  57. Steinman L. Multiple sclerosis and its animal models: the role of the major histocompatibility complex and the T cell receptor repertoire. Springer Semin Immunopathol. 1992;14(1):79–93. doi: 10.1007/BF00197133. [DOI] [PubMed] [Google Scholar]
  58. Tait B. D., Drummond B. P., Varney M. D., Harrison L. C. HLA-DRB1*0401 is associated with susceptibility to insulin-dependent diabetes mellitus independently of the DQB1 locus. Eur J Immunogenet. 1995 Aug;22(4):289–297. doi: 10.1111/j.1744-313x.1995.tb00245.x. [DOI] [PubMed] [Google Scholar]
  59. Teitelbaum D., Webb C., Arnon R., Sela M. Strain differences in susceptibility to experimental allergic encephalomyelitis and the immune response to the encephalitogenic determinant in inbred guinea pigs. Cell Immunol. 1977 Mar 15;29(2):265–271. doi: 10.1016/0008-8749(77)90321-5. [DOI] [PubMed] [Google Scholar]
  60. Toyonaga B., Yoshikai Y., Vadasz V., Chin B., Mak T. W. Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor beta chain. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8624–8628. doi: 10.1073/pnas.82.24.8624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Uría D. F., Gutierrez V., Menes B. B., Arribas J. M., Lopez-Larrea C. HLA class II susceptibility and resistance genes in patients with multiple sclerosis from northern Spain, by DNA-RFLP genotyping. J Neurol Neurosurg Psychiatry. 1993 Jun;56(6):722–723. doi: 10.1136/jnnp.56.6.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Utz U., Banks D., Jacobson S., Biddison W. E. Analysis of the T-cell receptor repertoire of human T-cell leukemia virus type 1 (HTLV-1) Tax-specific CD8+ cytotoxic T lymphocytes from patients with HTLV-1-associated disease: evidence for oligoclonal expansion. J Virol. 1996 Feb;70(2):843–851. doi: 10.1128/jvi.70.2.843-851.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Utz U., Biddison W. E., McFarland H. F., McFarlin D. E., Flerlage M., Martin R. Skewed T-cell receptor repertoire in genetically identical twins correlates with multiple sclerosis. Nature. 1993 Jul 15;364(6434):243–247. doi: 10.1038/364243a0. [DOI] [PubMed] [Google Scholar]
  64. Vandevyver C., Mertens N., van den Elsen P., Medaer R., Raus J., Zhang J. Clonal expansion of myelin basic protein-reactive T cells in patients with multiple sclerosis: restricted T cell receptor V gene rearrangements and CDR3 sequence. Eur J Immunol. 1995 Apr;25(4):958–968. doi: 10.1002/eji.1830250416. [DOI] [PubMed] [Google Scholar]
  65. Victoria-Gutierrez M., Martinez-Naves E., Coto E., Dominguez O., Uría F., Urra J. M., López-Larrea C. DNA analysis of HLA-DR4B1 subtypes in multiple sclerosis by specific oligonucleotide probes. J Neuroimmunol. 1991 Jun;32(3):279–283. doi: 10.1016/0165-5728(91)90198-g. [DOI] [PubMed] [Google Scholar]
  66. Voskuhl R. R., Martin R., McFarland H. F. A functional basis for the association of HLA class II genes and susceptibility to multiple sclerosis: cellular immune responses to myelin basic protein in a multiplex family. J Neuroimmunol. 1993 Feb;42(2):199–207. doi: 10.1016/0165-5728(93)90011-m. [DOI] [PubMed] [Google Scholar]
  67. Westall F. C., Robinson A. B., Caccam J., Jackson J., Ylar E. H. Essential chemical requirements for induction of allergic encephalomyelitis. Nature. 1971 Jan 1;229(5279):22–24. doi: 10.1038/229022a0. [DOI] [PubMed] [Google Scholar]
  68. Wucherpfennig K. W., Sette A., Southwood S., Oseroff C., Matsui M., Strominger J. L., Hafler D. A. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med. 1994 Jan 1;179(1):279–290. doi: 10.1084/jem.179.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES