Abstract
Immediate postreceptor events activated by IL-1-IL-1R interaction remain undefined. We have initiated studies to identify candidate signal transducers that associate with the cytosolic domain (cd) of the IL-1R. Immunocomplex kinase assays demonstrated an IL-1-activated myelin basic protein kinase activity that coprecipitated with the IL-1R from rat mesangial, mouse EL-4, and HeLa cells. Using glutathione-S-transferase (GST) fusion proteins, HeLa cell lysates next were assayed for kinases that associated with IL-1R cytoplasmic sequences. A GST-IL-1R fusion protein containing the entire cd (amino acids 369-569; GST-IL-1Rcd) recruited a kinase activity in the absence and presence of IL-1 stimulation. In contrast, a GST-IL-1R membrane-proximal region mutant (amino acids 369-501; GST-IL-1RcdDelta), which lacks COOH-terminal amino acid residues required for nuclear factor-kappaB activation, poorly phosphorylated MBP. In gel, kinase assays demonstrated 63-, 83-, and 100-kD kinases that specifically coprecipitated with the HeLa IL-1R and the GST-IL-1Rcd, but not GST-IL-1RcdDelta. 35S-labeled proteins, with Mrs identical to the kinase activities, stably associated with GST-IL-1Rcd. Transient transfection assays of 293 cells were used to evaluate the functional significance of these findings. Simply increasing IL-1cd expression in 293 cells stimulated 5'-IL-6 flanking region-regulated CAT activity threefold above control, an effect blocked by the kinase inhibitors staurosporine and calphostin C. In summary, we have identified two previously unrecognized 63- and 83-kD kinases as well as a protein with an Mr similar to the recently cloned IL-1R-associated kinase, all of which associate spontaneously with the IL-1Rcd. Ectopic IL-1Rcd expression was sufficient to trigger cellular activation, suggesting that the extracellular domain of the intact receptor represses signal transduction until IL-1 is bound. Given that the IL-1Rcd signaling domain has been conserved in a functionally diverse group of transmembrane receptors, further characterization of this signaling process may define novel molecular mechanisms controlling cellular function and differentiation.
Full Text
The Full Text of this article is available as a PDF (382.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergers G., Reikerstorfer A., Braselmann S., Graninger P., Busslinger M. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO J. 1994 Mar 1;13(5):1176–1188. doi: 10.1002/j.1460-2075.1994.tb06367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao Z., Henzel W. J., Gao X. IRAK: a kinase associated with the interleukin-1 receptor. Science. 1996 Feb 23;271(5252):1128–1131. doi: 10.1126/science.271.5252.1128. [DOI] [PubMed] [Google Scholar]
- Cao Z., Xiong J., Takeuchi M., Kurama T., Goeddel D. V. TRAF6 is a signal transducer for interleukin-1. Nature. 1996 Oct 3;383(6599):443–446. doi: 10.1038/383443a0. [DOI] [PubMed] [Google Scholar]
- Croston G. E., Cao Z., Goeddel D. V. NF-kappa B activation by interleukin-1 (IL-1) requires an IL-1 receptor-associated protein kinase activity. J Biol Chem. 1995 Jul 14;270(28):16514–16517. doi: 10.1074/jbc.270.28.16514. [DOI] [PubMed] [Google Scholar]
- Curtis B. M., Gallis B., Overell R. W., McMahan C. J., DeRoos P., Ireland R., Eisenman J., Dower S. K., Sims J. E. T-cell interleukin 1 receptor cDNA expressed in Chinese hamster ovary cells regulates functional responses to interleukin 1. Proc Natl Acad Sci U S A. 1989 May;86(9):3045–3049. doi: 10.1073/pnas.86.9.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinarello C. A. Biologic basis for interleukin-1 in disease. Blood. 1996 Mar 15;87(6):2095–2147. [PubMed] [Google Scholar]
- Dinarello C. A. Interleukin-1 and interleukin-1 antagonism. Blood. 1991 Apr 15;77(8):1627–1652. [PubMed] [Google Scholar]
- Dinarello C. A. The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J Infect Dis. 1991 Jun;163(6):1177–1184. doi: 10.1093/infdis/163.6.1177. [DOI] [PubMed] [Google Scholar]
- Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
- Frangioni J. V., Neel B. G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993 Apr;210(1):179–187. doi: 10.1006/abio.1993.1170. [DOI] [PubMed] [Google Scholar]
- Gallis B., Prickett K. S., Jackson J., Slack J., Schooley K., Sims J. E., Dower S. K. IL-1 induces rapid phosphorylation of the IL-1 receptor. J Immunol. 1989 Nov 15;143(10):3235–3240. [PubMed] [Google Scholar]
- Greenfeder S. A., Nunes P., Kwee L., Labow M., Chizzonite R. A., Ju G. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J Biol Chem. 1995 Jun 9;270(23):13757–13765. doi: 10.1074/jbc.270.23.13757. [DOI] [PubMed] [Google Scholar]
- Gronich J., Konieczkowski M., Gelb M. H., Nemenoff R. A., Sedor J. R. Interleukin 1 alpha causes rapid activation of cytosolic phospholipase A2 by phosphorylation in rat mesangial cells. J Clin Invest. 1994 Mar;93(3):1224–1233. doi: 10.1172/JCI117076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo C., Dower S. K., Holowka D., Baird B. Fluorescence resonance energy transfer reveals interleukin (IL)-1-dependent aggregation of IL-1 type I receptors that correlates with receptor activation. J Biol Chem. 1995 Nov 17;270(46):27562–27568. doi: 10.1074/jbc.270.46.27562. [DOI] [PubMed] [Google Scholar]
- Heguy A., Baldari C. T., Macchia G., Telford J. L., Melli M. Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila toll protein are essential for IL-1R signal transduction. J Biol Chem. 1992 Feb 5;267(4):2605–2609. [PubMed] [Google Scholar]
- Kishimoto T., Taga T., Akira S. Cytokine signal transduction. Cell. 1994 Jan 28;76(2):253–262. doi: 10.1016/0092-8674(94)90333-6. [DOI] [PubMed] [Google Scholar]
- Kuno K., Okamoto S., Hirose K., Murakami S., Matsushima K. Structure and function of the intracellular portion of the mouse interleukin 1 receptor (type I). Determining the essential region for transducing signals to activate the interleukin 8 gene. J Biol Chem. 1993 Jun 25;268(18):13510–13518. [PubMed] [Google Scholar]
- Leung K., Betts J. C., Xu L., Nabel G. J. The cytoplasmic domain of the interleukin-1 receptor is required for nuclear factor-kappa B signal transduction. J Biol Chem. 1994 Jan 21;269(3):1579–1582. [PubMed] [Google Scholar]
- Lewis C., Mazzei G., Shaw A. Monoclonal antibodies reacting with the interleukin 1 receptor define a multi-molecular complex. Eur J Immunol. 1990 Jan;20(1):207–213. doi: 10.1002/eji.1830200130. [DOI] [PubMed] [Google Scholar]
- Mitcham J. L., Parnet P., Bonnert T. P., Garka K. E., Gerhart M. J., Slack J. L., Gayle M. A., Dower S. K., Sims J. E. T1/ST2 signaling establishes it as a member of an expanding interleukin-1 receptor family. J Biol Chem. 1996 Mar 8;271(10):5777–5783. doi: 10.1074/jbc.271.10.5777. [DOI] [PubMed] [Google Scholar]
- Ray A., Sassone-Corsi P., Sehgal P. B. A multiple cytokine- and second messenger-responsive element in the enhancer of the human interleukin-6 gene: similarities with c-fos gene regulation. Mol Cell Biol. 1989 Dec;9(12):5537–5547. doi: 10.1128/mcb.9.12.5537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reikerstorfer A., Holz H., Stunnenberg H. G., Busslinger M. Low affinity binding of interleukin-1 beta and intracellular signaling via NF-kappa B identify Fit-1 as a distant member of the interleukin-1 receptor family. J Biol Chem. 1995 Jul 28;270(30):17645–17648. doi: 10.1074/jbc.270.30.17645. [DOI] [PubMed] [Google Scholar]
- Rosette C., Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science. 1996 Nov 15;274(5290):1194–1197. doi: 10.1126/science.274.5290.1194. [DOI] [PubMed] [Google Scholar]
- Sims J. E., Acres R. B., Grubin C. E., McMahan C. J., Wignall J. M., March C. J., Dower S. K. Cloning the interleukin 1 receptor from human T cells. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8946–8950. doi: 10.1073/pnas.86.22.8946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims J. E., Gayle M. A., Slack J. L., Alderson M. R., Bird T. A., Giri J. G., Colotta F., Re F., Mantovani A., Shanebeck K. Interleukin 1 signaling occurs exclusively via the type I receptor. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6155–6159. doi: 10.1073/pnas.90.13.6155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trofimova M., Sprenkle A. B., Green M., Sturgill T. W., Goebl M. G., Harrington M. A. Developmental and tissue-specific expression of mouse pelle-like protein kinase. J Biol Chem. 1996 Jul 26;271(30):17609–17612. doi: 10.1074/jbc.271.30.17609. [DOI] [PubMed] [Google Scholar]
- Vigers G. P., Anderson L. J., Caffes P., Brandhuber B. J. Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1beta. Nature. 1997 Mar 13;386(6621):190–194. doi: 10.1038/386190a0. [DOI] [PubMed] [Google Scholar]
- Whitmarsh A. J., Shore P., Sharrocks A. D., Davis R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science. 1995 Jul 21;269(5222):403–407. doi: 10.1126/science.7618106. [DOI] [PubMed] [Google Scholar]
- Zhang Y. H., Lin J. X., Vilcek J. Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol. 1990 Jul;10(7):3818–3823. doi: 10.1128/mcb.10.7.3818. [DOI] [PMC free article] [PubMed] [Google Scholar]