Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jul 15;100(2):439–448. doi: 10.1172/JCI119551

Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats.

D Schwartz 1, M Mendonca 1, I Schwartz 1, Y Xia 1, J Satriano 1, C B Wilson 1, R C Blantz 1
PMCID: PMC508208  PMID: 9218522

Abstract

Excess NO generation plays a major role in the hypotension and systemic vasodilatation characteristic of sepsis. Yet the kidney response to sepsis is characterized by vasoconstriction resulting in renal dysfunction. We have examined the roles of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) on the renal effects of lipopolysaccharide administration by comparing the effects of specific iNOS inhibition, -N6-(1-iminoethyl)lysine (L-NIL), and 2,4-diamino6-hydroxy-pyrimidine vs. nonspecific NOS inhibitors (nitro- -arginine-methylester). cGMP responses to carbamylcholine (CCh) (stimulated, basal) and sodium nitroprusside in isolated glomeruli were used as indices of eNOS and guanylate cyclase (GC) activity, respectively. LPS significantly decreased blood pressure and GFR (112+/-4 vs. 83+/-4 mmHg; 2.66+/-0.29 vs. 0. 96+/-0.22 ml/min, P < 0.05) and inhibited the cGMP response to CCh. GC activity was reciprocally increased. L-NIL and 2, 4-diamino-6-hydroxy-pyrimidine administration prevented the decrease in GFR (2.71+/-0.28 and 3.16+/-0.18 ml/min, respectively), restored the normal response to CCh, and GC activity was normalized. In vitro application of L-NIL also restored CCh responses in LPS glomeruli. Neuronal NOS inhibitors verified that CCh responses reflected eNOS activity. L-NAME, a nonspecific inhibitor, worsened GFR (0.41+/-0.15 ml/min), a reduction that was functional and not related to glomerular thrombosis, and eliminated the CCh response. No differences were observed in eNOS mRNA expression among the experimental groups. Selective iNOS inhibition prevents reductions in GFR, whereas nonselective inhibition of NOS further decreases GFR. These findings suggest that the decrease in GFR after LPS is due to local inhibition of eNOS by iNOS, possibly via NO autoinhibition.

Full Text

The Full Text of this article is available as a PDF (420.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badr K. F. Sepsis-associated renal vasoconstriction: potential targets for future therapy. Am J Kidney Dis. 1992 Sep;20(3):207–213. doi: 10.1016/s0272-6386(12)80692-5. [DOI] [PubMed] [Google Scholar]
  2. Bartholomew B. A rapid method for the assay of nitrate in urine using the nitrate reductase enzyme of Escherichia coli. Food Chem Toxicol. 1984 Jul;22(7):541–543. doi: 10.1016/0278-6915(84)90224-2. [DOI] [PubMed] [Google Scholar]
  3. Baylis C., Engels K., Samsell L., Harton P. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II. Am J Physiol. 1993 Jan;264(1 Pt 2):F74–F78. doi: 10.1152/ajprenal.1993.264.1.F74. [DOI] [PubMed] [Google Scholar]
  4. Baylis C., Harton P., Engels K. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol. 1990 Dec;1(6):875–881. doi: 10.1681/ASN.V16875. [DOI] [PubMed] [Google Scholar]
  5. Bogdan C., Werner E., Stenger S., Wachter H., Röllinghoff M., Werner-Felmayer G. 2,4-Diamino-6-hydroxypyrimidine, an inhibitor of tetrahydrobiopterin synthesis, downregulates the expression of iNOS protein and mRNA in primary murine macrophages. FEBS Lett. 1995 Apr 17;363(1-2):69–74. doi: 10.1016/0014-5793(95)00284-g. [DOI] [PubMed] [Google Scholar]
  6. Bone R. C. The pathogenesis of sepsis. Ann Intern Med. 1991 Sep 15;115(6):457–469. doi: 10.7326/0003-4819-115-6-457. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Cobb J. P., Natanson C., Hoffman W. D., Lodato R. F., Banks S., Koev C. A., Solomon M. A., Elin R. J., Hosseini J. M., Danner R. L. N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med. 1992 Oct 1;176(4):1175–1182. doi: 10.1084/jem.176.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cumming A. D., Driedger A. A., McDonald J. W., Lindsay R. M., Solez K., Linton A. L. Vasoactive hormones in the renal response to systemic sepsis. Am J Kidney Dis. 1988 Jan;11(1):23–32. doi: 10.1016/s0272-6386(88)80170-7. [DOI] [PubMed] [Google Scholar]
  10. De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest. 1992 Apr;89(4):1248–1256. doi: 10.1172/JCI115709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feng L., Xia Y., Yoshimura T., Wilson C. B. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. J Clin Invest. 1995 Mar;95(3):1009–1017. doi: 10.1172/JCI117745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fink M. P., Fiallo V., Stein K. L., Gardiner W. M. Systemic and regional hemodynamic changes after intraperitoneal endotoxin in rabbits: development of a new model of the clinical syndrome of hyperdynamic sepsis. Circ Shock. 1987;22(1):73–81. [PubMed] [Google Scholar]
  13. Goto S., Yamamoto T., Feng L., Yaoita E., Hirose S., Fujinaka H., Kawasaki K., Hattori R., Yui Y., Wilson C. B. Expression and localization of inducible nitric oxide synthase in anti-Thy-1 glomerulonephritis. Am J Pathol. 1995 Oct;147(4):1133–1141. [PMC free article] [PubMed] [Google Scholar]
  14. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  15. Griscavage J. M., Rogers N. E., Sherman M. P., Ignarro L. J. Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J Immunol. 1993 Dec 1;151(11):6329–6337. [PubMed] [Google Scholar]
  16. Gross S. S., Levi R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem. 1992 Dec 25;267(36):25722–25729. [PubMed] [Google Scholar]
  17. Harbrecht B. G., Billiar T. R., Stadler J., Demetris A. J., Ochoa J., Curran R. D., Simmons R. L. Inhibition of nitric oxide synthesis during endotoxemia promotes intrahepatic thrombosis and an oxygen radical-mediated hepatic injury. J Leukoc Biol. 1992 Oct;52(4):390–394. doi: 10.1002/jlb.52.4.390. [DOI] [PubMed] [Google Scholar]
  18. Ignarro L. J. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989 Jan;3(1):31–36. doi: 10.1096/fasebj.3.1.2642868. [DOI] [PubMed] [Google Scholar]
  19. Kilbourn R. G., Gross S. S., Jubran A., Adams J., Griffith O. W., Levi R., Lodato R. F. NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci U S A. 1990 May;87(9):3629–3632. doi: 10.1073/pnas.87.9.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacMicking J. D., Nathan C., Hom G., Chartrain N., Fletcher D. S., Trumbauer M., Stevens K., Xie Q. W., Sokol K., Hutchinson N. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995 May 19;81(4):641–650. doi: 10.1016/0092-8674(95)90085-3. [DOI] [PubMed] [Google Scholar]
  21. MacNaul K. L., Hutchinson N. I. Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1330–1334. doi: 10.1006/bbrc.1993.2398. [DOI] [PubMed] [Google Scholar]
  22. Moncada S., Rees D. D., Schulz R., Palmer R. M. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2166–2170. doi: 10.1073/pnas.88.6.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore P. K., Wallace P., Gaffen Z., Hart S. L., Babbedge R. C. Characterization of the novel nitric oxide synthase inhibitor 7-nitro indazole and related indazoles: antinociceptive and cardiovascular effects. Br J Pharmacol. 1993 Sep;110(1):219–224. doi: 10.1111/j.1476-5381.1993.tb13795.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moore W. M., Webber R. K., Jerome G. M., Tjoeng F. S., Misko T. P., Currie M. G. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J Med Chem. 1994 Nov 11;37(23):3886–3888. doi: 10.1021/jm00049a007. [DOI] [PubMed] [Google Scholar]
  25. Myers P. R., Zhong Q., Jones J. J., Tanner M. A., Adams H. R., Parker J. L. Release of EDRF and NO in ex vivo perfused aorta: inhibition by in vivo E. coli endotoxemia. Am J Physiol. 1995 Mar;268(3 Pt 2):H955–H961. doi: 10.1152/ajpheart.1995.268.3.H955. [DOI] [PubMed] [Google Scholar]
  26. Palmer R. M. The discovery of nitric oxide in the vessel wall. A unifying concept in the pathogenesis of sepsis. Arch Surg. 1993 Apr;128(4):396–401. doi: 10.1001/archsurg.1993.01420160034004. [DOI] [PubMed] [Google Scholar]
  27. Parrillo J. E. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993 May 20;328(20):1471–1477. doi: 10.1056/NEJM199305203282008. [DOI] [PubMed] [Google Scholar]
  28. Remuzzi A., Puntorieri S., Alfano M., Macconi D., Abbate M., Bertani T., Remuzzi G. Pathophysiologic implications of proteinuria in a rat model of progressive glomerular injury. Lab Invest. 1992 Nov;67(5):572–579. [PubMed] [Google Scholar]
  29. Remuzzi A., Puntorieri S., Mazzoleni A., Remuzzi G. Sex related differences in glomerular ultrafiltration and proteinuria in Munich-Wistar rats. Kidney Int. 1988 Oct;34(4):481–486. doi: 10.1038/ki.1988.206. [DOI] [PubMed] [Google Scholar]
  30. Rengasamy A., Johns R. A. Regulation of nitric oxide synthase by nitric oxide. Mol Pharmacol. 1993 Jul;44(1):124–128. [PubMed] [Google Scholar]
  31. Salvemini D., Korbut R., Anggård E., Vane J. Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2593–2597. doi: 10.1073/pnas.87.7.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmidt K., Werner E. R., Mayer B., Wachter H., Kukovetz W. R. Tetrahydrobiopterin-dependent formation of endothelium-derived relaxing factor (nitric oxide) in aortic endothelial cells. Biochem J. 1992 Jan 15;281(Pt 2):297–300. doi: 10.1042/bj2810297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shultz P. J., Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest. 1992 Nov;90(5):1718–1725. doi: 10.1172/JCI116045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spain D. A., Wilson M. A., Bloom I. T., Garrison R. N. Renal microvascular responses to sepsis are dependent on nitric oxide. J Surg Res. 1994 Jun;56(6):524–529. doi: 10.1006/jsre.1994.1084. [DOI] [PubMed] [Google Scholar]
  35. Thiemermann C., Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol. 1990 Jul 17;182(3):591–595. doi: 10.1016/0014-2999(90)90062-b. [DOI] [PubMed] [Google Scholar]
  36. Thorup C., Erik A., Persson G. Macula densa derived nitric oxide in regulation of glomerular capillary pressure. Kidney Int. 1996 Feb;49(2):430–436. doi: 10.1038/ki.1996.62. [DOI] [PubMed] [Google Scholar]
  37. Tucker B. J., Mendonca M. M., Blantz R. C. Contrasting effects of acute insulin infusion on renal function in awake nondiabetic and diabetic rats. J Am Soc Nephrol. 1993 Apr;3(10):1686–1693. doi: 10.1681/ASN.V3101686. [DOI] [PubMed] [Google Scholar]
  38. Tucker B. J., Mundy C. A., Maciejewski A. R., Printz M. P., Ziegler M. G., Pelayo J. C., Blantz R. C. Changes in glomerular hemodynamic response to angiotensin II after subacute renal denervation in rats. J Clin Invest. 1986 Sep;78(3):680–688. doi: 10.1172/JCI112627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ujiie K., Hogarth L., Danziger R., Drewett J. G., Yuen P. S., Pang I. H., Star R. A. Homologous and heterologous desensitization of a guanylyl cyclase-linked nitric oxide receptor in cultured rat medullary interstitial cells. J Pharmacol Exp Ther. 1994 Aug;270(2):761–767. [PubMed] [Google Scholar]
  40. Westberg G., Shultz P. J., Raij L. Exogenous nitric oxide prevents endotoxin-induced glomerular thrombosis in rats. Kidney Int. 1994 Sep;46(3):711–716. doi: 10.1038/ki.1994.325. [DOI] [PubMed] [Google Scholar]
  41. Yoshizumi M., Perrella M. A., Burnett J. C., Jr, Lee M. E. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res. 1993 Jul;73(1):205–209. doi: 10.1161/01.res.73.1.205. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES