Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):503–513. doi: 10.1172/JCI119559

Human histocompatibility leukocyte antigen-binding supermotifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis.

R Bertoni 1, J Sidney 1, P Fowler 1, R W Chesnut 1, F V Chisari 1, A Sette 1
PMCID: PMC508216  PMID: 9239396

Abstract

The present study was designed to determine if highly conserved hepatitis B virus (HBV)-derived peptides that bind multiple HLA class I alleles with high affinity are recognized as cytotoxic T lymphocyte (CTL) epitopes in acutely infected patients. Peripheral blood mononuclear cells from 67 patients with acute hepatitis B, and 12 patients convalescent from acute hepatitis B, were stimulated with three panels of peptides, each of which bind with high affinity to several class I alleles from the HLA-A2-, HLA-A3-, or HLA-B7-supertypes. In these patients, 8 of the 19 peptides tested were found to represent CTL epitopes recognized by two or more alleles in each supertype. Two sets of nested peptides were recognized in the context of alleles with completely unrelated peptide binding specificities. Finally, promiscuous recognition by the same CTL of a given peptide presented by target cells expressing different A2 subtypes was also commonly observed. In conclusion, several HBV-specific CTL epitopes, recognized by acutely infected or convalescent patients in the context of a wide range of HLA alleles have been identified. These results demonstrate the functional relevance of the supertype grouping of HLA class I molecules in a human viral disease setting. Furthermore, they represent a significant advance in the development of a totally synthetic vaccine to terminate chronic HBV infection and support the feasibility of a systematic approach to development of similar vaccines for prevention and treatment of other chronic viral infections.

Full Text

The Full Text of this article is available as a PDF (206.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J., Sidney J., Southwood S., Ruppert J., Oseroff C., Maewal A., Snoke K., Serra H. M., Kubo R. T., Sette A. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity. 1994 Dec;1(9):751–761. doi: 10.1016/s1074-7613(94)80017-0. [DOI] [PubMed] [Google Scholar]
  2. Alexander J., Snoke K., Ruppert J., Sidney J., Wall M., Southwood S., Oseroff C., Arrhenius T., Gaeta F. C., Colón S. M. Functional consequences of engagement of the T cell receptor by low affinity ligands. J Immunol. 1993 Jan 1;150(1):1–7. [PubMed] [Google Scholar]
  3. Barber L. D., Gillece-Castro B., Percival L., Li X., Clayberger C., Parham P. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol. 1995 Feb 1;5(2):179–190. doi: 10.1016/s0960-9822(95)00039-x. [DOI] [PubMed] [Google Scholar]
  4. Battegay M., Fikes J., Di Bisceglie A. M., Wentworth P. A., Sette A., Celis E., Ching W. M., Grakoui A., Rice C. M., Kurokohchi K. Patients with chronic hepatitis C have circulating cytotoxic T cells which recognize hepatitis C virus-encoded peptides binding to HLA-A2.1 molecules. J Virol. 1995 Apr;69(4):2462–2470. doi: 10.1128/jvi.69.4.2462-2470.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bednarek M. A., Sauma S. Y., Gammon M. C., Porter G., Tamhankar S., Williamson A. R., Zweerink H. J. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. J Immunol. 1991 Dec 15;147(12):4047–4053. [PubMed] [Google Scholar]
  6. Bertoletti A., Ferrari C., Fiaccadori F., Penna A., Margolskee R., Schlicht H. J., Fowler P., Guilhot S., Chisari F. V. HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10445–10449. doi: 10.1073/pnas.88.23.10445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berzofsky J. A., Pendleton C. D., Clerici M., Ahlers J., Lucey D. R., Putney S. D., Shearer G. M. Construction of peptides encompassing multideterminant clusters of human immunodeficiency virus envelope to induce in vitro T cell responses in mice and humans of multiple MHC types. J Clin Invest. 1991 Sep;88(3):876–884. doi: 10.1172/JCI115389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cease K. B., Berzofsky J. A. Toward a vaccine for AIDS: the emergence of immunobiology-based vaccine development. Annu Rev Immunol. 1994;12:923–989. doi: 10.1146/annurev.iy.12.040194.004423. [DOI] [PubMed] [Google Scholar]
  9. Celis E., Ou D., Otvos L., Jr Recognition of hepatitis B surface antigen by human T lymphocytes. Proliferative and cytotoxic responses to a major antigenic determinant defined by synthetic peptides. J Immunol. 1988 Mar 15;140(6):1808–1815. [PubMed] [Google Scholar]
  10. Celis E., Tsai V., Crimi C., DeMars R., Wentworth P. A., Chesnut R. W., Grey H. M., Sette A., Serra H. M. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2105–2109. doi: 10.1073/pnas.91.6.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chisari F. V., Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol. 1995;13:29–60. doi: 10.1146/annurev.iy.13.040195.000333. [DOI] [PubMed] [Google Scholar]
  12. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  13. Fernandez-Viña M. A., Falco M., Sun Y., Stastny P. DNA typing for HLA class I alleles: I. Subsets of HLA-A2 and of -A28. Hum Immunol. 1992 Mar;33(3):163–173. doi: 10.1016/0198-8859(92)90068-x. [DOI] [PubMed] [Google Scholar]
  14. Ferrari C., Bertoletti A., Penna A., Cavalli A., Valli A., Missale G., Pilli M., Fowler P., Giuberti T., Chisari F. V. Identification of immunodominant T cell epitopes of the hepatitis B virus nucleocapsid antigen. J Clin Invest. 1991 Jul;88(1):214–222. doi: 10.1172/JCI115280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ferrie R. M., Schwarz M. J., Robertson N. H., Vaudin S., Super M., Malone G., Little S. Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene. Am J Hum Genet. 1992 Aug;51(2):251–262. [PMC free article] [PubMed] [Google Scholar]
  16. Guilhot S., Fowler P., Portillo G., Margolskee R. F., Ferrari C., Bertoletti A., Chisari F. V. Hepatitis B virus (HBV)-specific cytotoxic T-cell response in humans: production of target cells by stable expression of HBV-encoded proteins in immortalized human B-cell lines. J Virol. 1992 May;66(5):2670–2678. doi: 10.1128/jvi.66.5.2670-2678.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kast W. M., Brandt R. M., Sidney J., Drijfhout J. W., Kubo R. T., Grey H. M., Melief C. J., Sette A. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol. 1994 Apr 15;152(8):3904–3912. [PubMed] [Google Scholar]
  18. Koshy R., Inchauspé G. Evaluation of hepatitis C virus protein epitopes for vaccine development. Trends Biotechnol. 1996 Oct;14(10):364–369. doi: 10.1016/0167-7799(96)10049-4. [DOI] [PubMed] [Google Scholar]
  19. Krieger J. I., Karr R. W., Grey H. M., Yu W. Y., O'Sullivan D., Batovsky L., Zheng Z. L., Colón S. M., Gaeta F. C., Sidney J. Single amino acid changes in DR and antigen define residues critical for peptide-MHC binding and T cell recognition. J Immunol. 1991 Apr 1;146(7):2331–2340. [PubMed] [Google Scholar]
  20. Kubo R. T., Sette A., Grey H. M., Appella E., Sakaguchi K., Zhu N. Z., Arnott D., Sherman N., Shabanowitz J., Michel H. Definition of specific peptide motifs for four major HLA-A alleles. J Immunol. 1994 Apr 15;152(8):3913–3924. [PubMed] [Google Scholar]
  21. Meadows L., Wang W., den Haan J. M., Blokland E., Reinhardus C., Drijfhout J. W., Shabanowitz J., Pierce R., Agulnik A. I., Bishop C. E. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity. 1997 Mar;6(3):273–281. doi: 10.1016/s1074-7613(00)80330-1. [DOI] [PubMed] [Google Scholar]
  22. Missale G., Redeker A., Person J., Fowler P., Guilhot S., Schlicht H. J., Ferrari C., Chisari F. V. HLA-A31- and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J Exp Med. 1993 Mar 1;177(3):751–762. doi: 10.1084/jem.177.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Molldrem J., Dermime S., Parker K., Jiang Y. Z., Mavroudis D., Hensel N., Fukushima P., Barrett A. J. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood. 1996 Oct 1;88(7):2450–2457. [PubMed] [Google Scholar]
  24. Nayersina R., Fowler P., Guilhot S., Missale G., Cerny A., Schlicht H. J., Vitiello A., Chesnut R., Person J. L., Redeker A. G. HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol. 1993 May 15;150(10):4659–4671. [PubMed] [Google Scholar]
  25. O'Sullivan D., Sidney J., Del Guercio M. F., Colón S. M., Sette A. Truncation analysis of several DR binding epitopes. J Immunol. 1991 Feb 15;146(4):1240–1246. [PubMed] [Google Scholar]
  26. Oldstone M. B., Tishon A., Geckeler R., Lewicki H., Whitton J. L. A common antiviral cytotoxic T-lymphocyte epitope for diverse major histocompatibility complex haplotypes: implications for vaccination. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2752–2755. doi: 10.1073/pnas.89.7.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Panina-Bordignon P., Tan A., Termijtelen A., Demotz S., Corradin G., Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol. 1989 Dec;19(12):2237–2242. doi: 10.1002/eji.1830191209. [DOI] [PubMed] [Google Scholar]
  28. Pasek M., Goto T., Gilbert W., Zink B., Schaller H., MacKay P., Leadbetter G., Murray K. Hepatitis B virus genes and their expression in E. coli. Nature. 1979 Dec 6;282(5739):575–579. doi: 10.1038/282575a0. [DOI] [PubMed] [Google Scholar]
  29. Penna A., Chisari F. V., Bertoletti A., Missale G., Fowler P., Giuberti T., Fiaccadori F., Ferrari C. Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen. J Exp Med. 1991 Dec 1;174(6):1565–1570. doi: 10.1084/jem.174.6.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rehermann B., Chang K. M., McHutchinson J., Kokka R., Houghton M., Rice C. M., Chisari F. V. Differential cytotoxic T-lymphocyte responsiveness to the hepatitis B and C viruses in chronically infected patients. J Virol. 1996 Oct;70(10):7092–7102. doi: 10.1128/jvi.70.10.7092-7102.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rehermann B., Chang K. M., McHutchison J. G., Kokka R., Houghton M., Chisari F. V. Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response in patients with chronic hepatitis C virus infection. J Clin Invest. 1996 Sep 15;98(6):1432–1440. doi: 10.1172/JCI118931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rehermann B., Ferrari C., Pasquinelli C., Chisari F. V. The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat Med. 1996 Oct;2(10):1104–1108. doi: 10.1038/nm1096-1104. [DOI] [PubMed] [Google Scholar]
  33. Rehermann B., Fowler P., Sidney J., Person J., Redeker A., Brown M., Moss B., Sette A., Chisari F. V. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med. 1995 Mar 1;181(3):1047–1058. doi: 10.1084/jem.181.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rehermann B., Lau D., Hoofnagle J. H., Chisari F. V. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest. 1996 Apr 1;97(7):1655–1665. doi: 10.1172/JCI118592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rothbard J. B., Lechler R. I., Howland K., Bal V., Eckels D. D., Sekaly R., Long E. O., Taylor W. R., Lamb J. R. Structural model of HLA-DR1 restricted T cell antigen recognition. Cell. 1988 Feb 26;52(4):515–523. doi: 10.1016/0092-8674(88)90464-3. [DOI] [PubMed] [Google Scholar]
  36. Ruppert J., Sidney J., Celis E., Kubo R. T., Grey H. M., Sette A. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell. 1993 Sep 10;74(5):929–937. doi: 10.1016/0092-8674(93)90472-3. [DOI] [PubMed] [Google Scholar]
  37. Sette A., Sidney J., del Guercio M. F., Southwood S., Ruppert J., Dahlberg C., Grey H. M., Kubo R. T. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol Immunol. 1994 Aug;31(11):813–822. doi: 10.1016/0161-5890(94)90019-1. [DOI] [PubMed] [Google Scholar]
  38. Sette A., Vitiello A., Reherman B., Fowler P., Nayersina R., Kast W. M., Melief C. J., Oseroff C., Yuan L., Ruppert J. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol. 1994 Dec 15;153(12):5586–5592. [PubMed] [Google Scholar]
  39. Sidney J., Grey H. M., Kubo R. T., Sette A. Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol Today. 1996 Jun;17(6):261–266. doi: 10.1016/0167-5699(96)80542-1. [DOI] [PubMed] [Google Scholar]
  40. Sidney J., Grey H. M., Southwood S., Celis E., Wentworth P. A., del Guercio M. F., Kubo R. T., Chesnut R. W., Sette A. Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. Hum Immunol. 1996 Feb;45(2):79–93. doi: 10.1016/0198-8859(95)00173-5. [DOI] [PubMed] [Google Scholar]
  41. Sidney J., Southwood S., del Guercio M. F., Grey H. M., Chesnut R. W., Kubo R. T., Sette A. Specificity and degeneracy in peptide binding to HLA-B7-like class I molecules. J Immunol. 1996 Oct 15;157(8):3480–3490. [PubMed] [Google Scholar]
  42. Sidney J., del Guercio M. F., Southwood S., Engelhard V. H., Appella E., Rammensee H. G., Falk K., Rötzschke O., Takiguchi M., Kubo R. T. Several HLA alleles share overlapping peptide specificities. J Immunol. 1995 Jan 1;154(1):247–259. [PubMed] [Google Scholar]
  43. Sinigaglia F., Guttinger M., Kilgus J., Doran D. M., Matile H., Etlinger H., Trzeciak A., Gillessen D., Pink J. R. A malaria T-cell epitope recognized in association with most mouse and human MHC class II molecules. Nature. 1988 Dec 22;336(6201):778–780. doi: 10.1038/336778a0. [DOI] [PubMed] [Google Scholar]
  44. Snoke K., Alexander J., Franco A., Smith L., Brawley J. V., Concannon P., Grey H. M., Sette A., Wentworth P. The inhibition of different T cell lines specific for the same antigen with TCR antagonist peptides. J Immunol. 1993 Dec 15;151(12):6815–6821. [PubMed] [Google Scholar]
  45. Vitiello A., Ishioka G., Grey H. M., Rose R., Farness P., LaFond R., Yuan L., Chisari F. V., Furze J., Bartholomeuz R. Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans. J Clin Invest. 1995 Jan;95(1):341–349. doi: 10.1172/JCI117662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vitiello A., Marchesini D., Furze J., Sherman L. A., Chesnut R. W. Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex. J Exp Med. 1991 Apr 1;173(4):1007–1015. doi: 10.1084/jem.173.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang R. F., Rosenberg S. A. Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. J Leukoc Biol. 1996 Sep;60(3):296–309. doi: 10.1002/jlb.60.3.296. [DOI] [PubMed] [Google Scholar]
  48. Wentworth P. A., Vitiello A., Sidney J., Keogh E., Chesnut R. W., Grey H., Sette A. Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice. Eur J Immunol. 1996 Jan;26(1):97–101. doi: 10.1002/eji.1830260115. [DOI] [PubMed] [Google Scholar]
  49. Zemmour J., Parham P. HLA class I nucleotide sequences, 1992. Tissue Antigens. 1992 Nov;40(5):221–228. doi: 10.1111/j.1399-0039.1992.tb02049.x. [DOI] [PubMed] [Google Scholar]
  50. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974 Apr 19;248(5450):701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]
  51. del Guercio M. F., Sidney J., Hermanson G., Perez C., Grey H. M., Kubo R. T., Sette A. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol. 1995 Jan 15;154(2):685–693. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES