Abstract
Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotically inactivated and transplanted in adult nude/mdx mice. Transplantation of 3 x 10(6) producer cells in a single site of the tibialis anterior muscle resulted in the transduction of between 5.5 and 18% total muscle fibers. The same procedure proved also feasible in immunocompetent mdx mice under short-term pharmacological immunosuppression. Minidystrophin expression was stable for up to 6 mo and led to alpha-sarcoglycan reexpression. Muscle stem cells could be transduced in vivo using this procedure. Transduced dystrophic skeletal muscle showed evidence of active remodeling reminiscent of the genetic normalization process which takes place in female DMD carriers. Overall, these results demonstrate that retroviral-mediated dystrophin gene transfer via transplantation of producer cells is a valid approach towards the long-term goal of gene therapy of DMD.
Full Text
The Full Text of this article is available as a PDF (722.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acsadi G., Dickson G., Love D. R., Jani A., Walsh F. S., Gurusinghe A., Wolff J. A., Davies K. E. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature. 1991 Aug 29;352(6338):815–818. doi: 10.1038/352815a0. [DOI] [PubMed] [Google Scholar]
- Adam M. A., Ramesh N., Miller A. D., Osborne W. R. Internal initiation of translation in retroviral vectors carrying picornavirus 5' nontranslated regions. J Virol. 1991 Sep;65(9):4985–4990. doi: 10.1128/jvi.65.9.4985-4990.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allbrook D. Skeletal muscle regeneration. Muscle Nerve. 1981 May-Jun;4(3):234–245. doi: 10.1002/mus.880040311. [DOI] [PubMed] [Google Scholar]
- Bulfield G., Siller W. G., Wight P. A., Moore K. J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1189–1192. doi: 10.1073/pnas.81.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldwell C. J., Mattey D. L., Weller R. O. Role of the basement membrane in the regeneration of skeletal muscle. Neuropathol Appl Neurobiol. 1990 Jun;16(3):225–238. doi: 10.1111/j.1365-2990.1990.tb01159.x. [DOI] [PubMed] [Google Scholar]
- Campbell K. P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995 Mar 10;80(5):675–679. doi: 10.1016/0092-8674(95)90344-5. [DOI] [PubMed] [Google Scholar]
- Cashman N. R., Covault J., Wollman R. L., Sanes J. R. Neural cell adhesion molecule in normal, denervated, and myopathic human muscle. Ann Neurol. 1987 May;21(5):481–489. doi: 10.1002/ana.410210512. [DOI] [PubMed] [Google Scholar]
- Cooper B. J., Winand N. J., Stedman H., Valentine B. A., Hoffman E. P., Kunkel L. M., Scott M. O., Fischbeck K. H., Kornegay J. N., Avery R. J. The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature. 1988 Jul 14;334(6178):154–156. doi: 10.1038/334154a0. [DOI] [PubMed] [Google Scholar]
- Cox G. A., Cole N. M., Matsumura K., Phelps S. F., Hauschka S. D., Campbell K. P., Faulkner J. A., Chamberlain J. S. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature. 1993 Aug 19;364(6439):725–729. doi: 10.1038/364725a0. [DOI] [PubMed] [Google Scholar]
- Cullen M. J., Walsh J., Nicholson L. V., Harris J. B., Zubrzycka-Gaarn E. E., Ray P. N., Worton R. G. Immunogold labelling of dystrophin in human muscle, using an antibody to the last 17 amino acids of the C-terminus. Neuromuscul Disord. 1991;1(2):113–119. doi: 10.1016/0960-8966(91)90058-z. [DOI] [PubMed] [Google Scholar]
- Dunckley M. G., Love D. R., Davies K. E., Walsh F. S., Morris G. E., Dickson G. Retroviral-mediated transfer of a dystrophin minigene into mdx mouse myoblasts in vitro. FEBS Lett. 1992 Jan 20;296(2):128–134. doi: 10.1016/0014-5793(92)80363-l. [DOI] [PubMed] [Google Scholar]
- Dunckley M. G., Wells D. J., Walsh F. S., Dickson G. Direct retroviral-mediated transfer of a dystrophin minigene into mdx mouse muscle in vivo. Hum Mol Genet. 1993 Jun;2(6):717–723. doi: 10.1093/hmg/2.6.717. [DOI] [PubMed] [Google Scholar]
- England S. B., Nicholson L. V., Johnson M. A., Forrest S. M., Love D. R., Zubrzycka-Gaarn E. E., Bulman D. E., Harris J. B., Davies K. E. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature. 1990 Jan 11;343(6254):180–182. doi: 10.1038/343180a0. [DOI] [PubMed] [Google Scholar]
- Fassati A., Takahara Y., Walsh F. S., Dickson G. Production of high titre helper-free recombinant retroviral vectors by lipofection. Nucleic Acids Res. 1994 Mar 25;22(6):1117–1118. doi: 10.1093/nar/22.6.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fassati A., Wells D. J., Walsh F. S., Dickson G. Efficiency of in vivo gene transfer using murine retroviral vectors is strain-dependent in mice. Hum Gene Ther. 1995 Sep;6(9):1177–1183. doi: 10.1089/hum.1995.6.9-1177. [DOI] [PubMed] [Google Scholar]
- Fassati A., Wells D. J., Walsh F. S., Dickson G. Transplantation of retroviral producer cells for in vivo gene transfer into mouse skeletal muscle. Hum Gene Ther. 1996 Mar 20;7(5):595–602. doi: 10.1089/hum.1996.7.5-595. [DOI] [PubMed] [Google Scholar]
- Figarella-Branger D., Nedelec J., Pellissier J. F., Boucraut J., Bianco N., Rougon G. Expression of various isoforms of neural cell adhesive molecules and their highly polysialylated counterparts in diseased human muscles. J Neurol Sci. 1990 Aug;98(1):21–36. doi: 10.1016/0022-510x(90)90179-q. [DOI] [PubMed] [Google Scholar]
- Hoffman E. P., Arahata K., Minetti C., Bonilla E., Rowland L. P. Dystrophinopathy in isolated cases of myopathy in females. Neurology. 1992 May;42(5):967–975. doi: 10.1212/wnl.42.5.967. [DOI] [PubMed] [Google Scholar]
- Hoffman E. P., Brown R. H., Jr, Kunkel L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987 Dec 24;51(6):919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
- Kinoshita I., Vilquin J. T., Guérette B., Asselin I., Roy R., Tremblay J. P. Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve. 1994 Dec;17(12):1407–1415. doi: 10.1002/mus.880171210. [DOI] [PubMed] [Google Scholar]
- Markowitz D., Goff S., Bank A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology. 1988 Dec;167(2):400–406. [PubMed] [Google Scholar]
- Moore S. E., Walsh F. S. Specific regulation of N-CAM/D2-CAM cell adhesion molecule during skeletal muscle development. EMBO J. 1985 Mar;4(3):623–630. doi: 10.1002/j.1460-2075.1985.tb03675.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naldini L., Blömer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996 Apr 12;272(5259):263–267. doi: 10.1126/science.272.5259.263. [DOI] [PubMed] [Google Scholar]
- Nguyen thi Man, Cartwright A. J., Morris G. E., Love D. R., Bloomfield J. F., Davies K. E. Monoclonal antibodies against defined regions of the muscular dystrophy protein, dystrophin. FEBS Lett. 1990 Mar 26;262(2):237–240. doi: 10.1016/0014-5793(90)80199-s. [DOI] [PubMed] [Google Scholar]
- Nguyen T. M., Morris G. E. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy. Am J Hum Genet. 1993 Jun;52(6):1057–1066. [PMC free article] [PubMed] [Google Scholar]
- Nicholson L. V., Davison K., Falkous G., Harwood C., O'Donnell E., Slater C. R., Harris J. B. Dystrophin in skeletal muscle. I. Western blot analysis using a monoclonal antibody. J Neurol Sci. 1989 Dec;94(1-3):125–136. doi: 10.1016/0022-510x(89)90223-2. [DOI] [PubMed] [Google Scholar]
- Overturf K., Al-Dhalimy M., Tanguay R., Brantly M., Ou C. N., Finegold M., Grompe M. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet. 1996 Mar;12(3):266–273. doi: 10.1038/ng0396-266. [DOI] [PubMed] [Google Scholar]
- Palmer T. D., Miller A. D., Reeder R. H., McStay B. Efficient expression of a protein coding gene under the control of an RNA polymerase I promoter. Nucleic Acids Res. 1993 Jul 25;21(15):3451–3457. doi: 10.1093/nar/21.15.3451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegoraro E., Schimke R. N., Garcia C., Stern H., Cadaldini M., Angelini C., Barbosa E., Carroll J., Marks W. A., Neville H. E. Genetic and biochemical normalization in female carriers of Duchenne muscular dystrophy: evidence for failure of dystrophin production in dystrophin-competent myonuclei. Neurology. 1995 Apr;45(4):677–690. doi: 10.1212/wnl.45.4.677. [DOI] [PubMed] [Google Scholar]
- Phelps S. F., Hauser M. A., Cole N. M., Rafael J. A., Hinkle R. T., Faulkner J. A., Chamberlain J. S. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet. 1995 Aug;4(8):1251–1258. doi: 10.1093/hmg/4.8.1251. [DOI] [PubMed] [Google Scholar]
- Rafael J. A., Cox G. A., Corrado K., Jung D., Campbell K. P., Chamberlain J. S. Forced expression of dystrophin deletion constructs reveals structure-function correlations. J Cell Biol. 1996 Jul;134(1):93–102. doi: 10.1083/jcb.134.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ragot T., Vincent N., Chafey P., Vigne E., Gilgenkrantz H., Couton D., Cartaud J., Briand P., Kaplan J. C., Perricaudet M. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature. 1993 Feb 18;361(6413):647–650. doi: 10.1038/361647a0. [DOI] [PubMed] [Google Scholar]
- Sherratt T. G., Vulliamy T., Strong P. N. Evolutionary conservation of the dystrophin central rod domain. Biochem J. 1992 Nov 1;287(Pt 3):755–759. doi: 10.1042/bj2870755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahara Y., Hamada K., Housman D. E. A new retrovirus packaging cell for gene transfer constructed from amplified long terminal repeat-free chimeric proviral genes. J Virol. 1992 Jun;66(6):3725–3732. doi: 10.1128/jvi.66.6.3725-3732.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinsley J. M., Blake D. J., Zuellig R. A., Davies K. E. Increasing complexity of the dystrophin-associated protein complex. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8307–8313. doi: 10.1073/pnas.91.18.8307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent N., Ragot T., Gilgenkrantz H., Couton D., Chafey P., Grégoire A., Briand P., Kaplan J. C., Kahn A., Perricaudet M. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat Genet. 1993 Oct;5(2):130–134. doi: 10.1038/ng1093-130. [DOI] [PubMed] [Google Scholar]
- Wells D. J., Wells K. E., Asante E. A., Turner G., Sunada Y., Campbell K. P., Walsh F. S., Dickson G. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet. 1995 Aug;4(8):1245–1250. doi: 10.1093/hmg/4.8.1245. [DOI] [PubMed] [Google Scholar]
- Wells D. J., Wells K. E., Walsh F. S., Davies K. E., Goldspink G., Love D. R., Chan-Thomas P., Dunckley M. G., Piper T., Dickson G. Human dystrophin expression corrects the myopathic phenotype in transgenic mdx mice. Hum Mol Genet. 1992 Apr;1(1):35–40. doi: 10.1093/hmg/1.1.35. [DOI] [PubMed] [Google Scholar]
- Worton R. Muscular dystrophies: diseases of the dystrophin-glycoprotein complex. Science. 1995 Nov 3;270(5237):755–756. doi: 10.1126/science.270.5237.755. [DOI] [PubMed] [Google Scholar]