Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):658–663. doi: 10.1172/JCI119577

Genetic bias in immune responses to a cassette shared by different microorganisms in patients with rheumatoid arthritis.

A La Cava 1, J L Nelson 1, W E Ollier 1, A MacGregor 1, E C Keystone 1, J C Thorne 1, J F Scavulli 1, C C Berry 1, D A Carson 1, S Albani 1
PMCID: PMC508234  PMID: 9239413

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease associated with HLA-DRbeta1 alleles which contain the QKRAA amino acid sequence in their third hypervariable region(s). The QKRAA sequence is also expressed by several human pathogens. We have shown previously that an Escherichia coli peptide encompassing QKRAA is a target of immune responses in RA patients. Here we address two questions: first, whether QKRAA may function as an "immunological cassette" with similar, RA-associated, immunogenic properties when expressed by other common human pathogens; and second, what is the influence of genetic background in the generation of these responses. We find that early RA patients have enhanced humoral and cellular immune responses to Epstein-Barr virus and Brucella ovis and Lactobacillus lactis antigens which contain the QKRAA sequence. These results suggest that the QKRAA sequence is an antigenic epitope on several different microbial proteins, and that RA patients recognize the immunological cassette on different backgrounds. ANOVA of immune responses to "shared epitope" antigens in monozygotic twin couples shows that, despite significantly elevated responses in affected individuals, a similarity between pairs is retained, thus suggesting a role played either by hereditary or shared environmental factors in the genesis or maintenance of these responses.

Full Text

The Full Text of this article is available as a PDF (268.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albani S., Carson D. A. A multistep molecular mimicry hypothesis for the pathogenesis of rheumatoid arthritis. Immunol Today. 1996 Oct;17(10):466–470. doi: 10.1016/0167-5699(96)20029-g. [DOI] [PubMed] [Google Scholar]
  2. Albani S., Carson D. A., Roudier J. Genetic and environmental factors in the immune pathogenesis of rheumatoid arthritis. Rheum Dis Clin North Am. 1992 Nov;18(4):729–740. [PubMed] [Google Scholar]
  3. Albani S., Keystone E. C., Nelson J. L., Ollier W. E., La Cava A., Montemayor A. C., Weber D. A., Montecucco C., Martini A., Carson D. A. Positive selection in autoimmunity: abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nat Med. 1995 May;1(5):448–452. doi: 10.1038/nm0595-448. [DOI] [PubMed] [Google Scholar]
  4. Albani S., Tuckwell J. E., Esparza L., Carson D. A., Roudier J. The susceptibility sequence to rheumatoid arthritis is a cross-reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule. J Clin Invest. 1992 Jan;89(1):327–331. doi: 10.1172/JCI115580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bardwell J. C., Tilly K., Craig E., King J., Zylicz M., Georgopoulos C. The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. A gene that encodes a heat shock protein. J Biol Chem. 1986 Feb 5;261(4):1782–1785. [PubMed] [Google Scholar]
  6. Baum H., Brusic V., Choudhuri K., Cunningham P., Vergani D., Peakman M. MHC molecular mimicry in diabetes. Nat Med. 1995 May;1(5):388–388. doi: 10.1038/nm0595-388. [DOI] [PubMed] [Google Scholar]
  7. Cellier M. F., Teyssier J., Nicolas M., Liautard J. P., Marti J., Sri Widada J. Cloning and characterization of the Brucella ovis heat shock protein DnaK functionally expressed in Escherichia coli. J Bacteriol. 1992 Dec;174(24):8036–8042. doi: 10.1128/jb.174.24.8036-8042.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chicz R. M., Urban R. G., Lane W. S., Gorga J. C., Stern L. J., Vignali D. A., Strominger J. L. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature. 1992 Aug 27;358(6389):764–768. doi: 10.1038/358764a0. [DOI] [PubMed] [Google Scholar]
  9. Gough A., Faint J., Salmon M., Hassell A., Wordsworth P., Pilling D., Birley A., Emery P. Genetic typing of patients with inflammatory arthritis at presentation can be used to predict outcome. Arthritis Rheum. 1994 Aug;37(8):1166–1170. doi: 10.1002/art.1780370809. [DOI] [PubMed] [Google Scholar]
  10. Gregersen P. K., Silver J., Winchester R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987 Nov;30(11):1205–1213. doi: 10.1002/art.1780301102. [DOI] [PubMed] [Google Scholar]
  11. Harris E. D., Jr Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med. 1990 May 3;322(18):1277–1289. doi: 10.1056/NEJM199005033221805. [DOI] [PubMed] [Google Scholar]
  12. Li Y., Sun G. R., Tumang J. R., Crow M. K., Friedman S. M. CDR3 sequence motifs shared by oligoclonal rheumatoid arthritis synovial T cells. Evidence for an antigen-driven response. J Clin Invest. 1994 Dec;94(6):2525–2531. doi: 10.1172/JCI117624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ollier W., Thomson W. Population genetics of rheumatoid arthritis. Rheum Dis Clin North Am. 1992 Nov;18(4):741–759. [PubMed] [Google Scholar]
  14. Pirzer U. C., Schürmann G., Post S., Betzler M., Meuer S. C. Differential responsiveness to CD3-Ti vs. CD2-dependent activation of human intestinal T lymphocytes. Eur J Immunol. 1990 Oct;20(10):2339–2342. doi: 10.1002/eji.1830201025. [DOI] [PubMed] [Google Scholar]
  15. Roudier J., Petersen J., Rhodes G. H., Luka J., Carson D. A. Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR beta-1 chain and the Epstein-Barr virus glycoprotein gp110. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5104–5108. doi: 10.1073/pnas.86.13.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roudier J., Rhodes G., Petersen J., Vaughan J. H., Carson D. A. The Epstein-Barr virus glycoprotein gp110, a molecular link between HLA DR4, HLA DR1, and rheumatoid arthritis. Scand J Immunol. 1988 Apr;27(4):367–371. doi: 10.1111/j.1365-3083.1988.tb02359.x. [DOI] [PubMed] [Google Scholar]
  17. Sköldstam L., Magnusson K. E. Fasting, intestinal permeability, and rheumatoid arthritis. Rheum Dis Clin North Am. 1991 May;17(2):363–371. [PubMed] [Google Scholar]
  18. Solimena M., De Camilli P. Coxsackieviruses and diabetes. Nat Med. 1995 Jan;1(1):25–26. doi: 10.1038/nm0195-25. [DOI] [PubMed] [Google Scholar]
  19. Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med. 1978 Apr 20;298(16):869–871. doi: 10.1056/NEJM197804202981602. [DOI] [PubMed] [Google Scholar]
  20. Weyand C. M., McCarthy T. G., Goronzy J. J. Correlation between disease phenotype and genetic heterogeneity in rheumatoid arthritis. J Clin Invest. 1995 May;95(5):2120–2126. doi: 10.1172/JCI117900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Winfield J. B. Stress proteins, arthritis, and autoimmunity. Arthritis Rheum. 1989 Dec;32(12):1497–1504. doi: 10.1002/anr.1780321202. [DOI] [PubMed] [Google Scholar]
  22. Zanelli E., Gonzalez-Gay M. A., David C. S. Could HLA-DRB1 be the protective locus in rheumatoid arthritis? Immunol Today. 1995 Jun;16(6):274–278. doi: 10.1016/0167-5699(95)80181-2. [DOI] [PubMed] [Google Scholar]
  23. van Asseldonk M., Simons A., Visser H., de Vos W. M., Simons G. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol. 1993 Mar;175(6):1637–1644. doi: 10.1128/jb.175.6.1637-1644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES