Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):664–670. doi: 10.1172/JCI119578

Tyrosine kinase inhibition ameliorates the hyperdynamic state and decreases nitric oxide production in cirrhotic rats with portal hypertension and ascites.

J C López-Talavera 1, A Levitzki 1, M Martínez 1, A Gazit 1, R Esteban 1, J Guardia 1
PMCID: PMC508235  PMID: 9239414

Abstract

Tumor necrosis factor-alpha (TNF) causes vasodilatation and a hyperdynamic state by activating nitric oxide (NO) synthesis. Tyrphostins, specific inhibitors of protein tyrosine kinase (PTK), block the signaling events induced by TNF and NO production. A hyperdynamic circulatory syndrome (HCS) is often observed in portal hypertension (PHT). TNF and NO seem to mediate these hemodynamic changes. The aim of this work was to study the effect of PTK inhibition on the systemic and portal hemodynamics, TNF and NO production, in cirrhotic rats with portal hypertension. Rats with liver cirrhosis induced by chronic inhalation of carbon tetrachloride were used. Animals were treated daily with tyrphostin AG 126 (alpha-cyano-(3-hydroxy-4-nitro) cinnamonitrile) or placebo for 5 d. Mean arterial pressure (MAP), heart rate (HR), and portal pressure (PP) were measured by indwelling catheters. Cardiac output (CI) and stroke volume (SV) were estimated by thermodilution, systemic vascular resistance (SVR) was calculated (MAP/CI), and portal systemic shunting (PSS) was quantitated using radioactive microspheres. Serum and mesenteric lymph node (MLN) TNF levels were measured using an immunoassay kit, and serum NOx was determined photometrically by its oxidation products. The AG 126-treated group showed a statistically significant increase in MAP and SVR, and decreases in CI, SV, MLN TNF, and serum NO oxidation products nitrite and nitrate (NOx) in comparison with the placebo-treated rats. No significant differences were noticed in HR, PP, PSS, or serum TNF. Significant correlations were observed between MAP and NOx, MAP and MLN TNF, PSS and NOx, and serum TNF and serum NOx. The HCS observed in PHT seems to be mediated, at least in part, by TNF and NO by the activation of PTKs and their signaling pathways. PTK activity inhibition ameliorates the hyperdynamic abnormalities that characterize animals with cirrhosis and PHT.

Full Text

The Full Text of this article is available as a PDF (295.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andus T., Bauer J., Gerok W. Effects of cytokines on the liver. Hepatology. 1991 Feb;13(2):364–375. [PubMed] [Google Scholar]
  2. Billiar T. R., Curran R. D., Harbrecht B. G., Stadler J., Williams D. L., Ochoa J. B., Di Silvio M., Simmons R. L., Murray S. A. Association between synthesis and release of cGMP and nitric oxide biosynthesis by hepatocytes. Am J Physiol. 1992 Apr;262(4 Pt 1):C1077–C1082. doi: 10.1152/ajpcell.1992.262.4.C1077. [DOI] [PubMed] [Google Scholar]
  3. Blei A. T., O'Reilly D. J., Gottstein J. Portal-systemic shunting and the hemodynamic effects of nitroglycerin in the rat. Gastroenterology. 1984 Jun;86(6):1428–1436. [PubMed] [Google Scholar]
  4. Colombato L. A., Albillos A., Groszmann R. J. Temporal relationship of peripheral vasodilatation, plasma volume expansion and the hyperdynamic circulatory state in portal-hypertensive rats. Hepatology. 1992 Feb;15(2):323–328. doi: 10.1002/hep.1840150224. [DOI] [PubMed] [Google Scholar]
  5. Devière J., Content J., Denys C., Vandenbussche P., Schandene L., Wybran J., Dupont E. Excessive in vitro bacterial lipopolysaccharide-induced production of monokines in cirrhosis. Hepatology. 1990 Apr;11(4):628–634. doi: 10.1002/hep.1840110416. [DOI] [PubMed] [Google Scholar]
  6. Dong Z., Qi X., Xie K., Fidler I. J. Protein tyrosine kinase inhibitors decrease induction of nitric oxide synthase activity in lipopolysaccharide-responsive and lipopolysaccharide-nonresponsive murine macrophages. J Immunol. 1993 Sep 1;151(5):2717–2724. [PubMed] [Google Scholar]
  7. Edelman G. M., Gally J. A. Nitric oxide: linking space and time in the brain. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11651–11652. doi: 10.1073/pnas.89.24.11651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fràter-Schröder M., Risau W., Hallmann R., Gautschi P., Böhlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5277–5281. doi: 10.1073/pnas.84.15.5277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gamble J. R., Harlan J. M., Klebanoff S. J., Vadas M. A. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8667–8671. doi: 10.1073/pnas.82.24.8667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garcia-Tsao G., Albillos A., Barden G. E., West A. B. Bacterial translocation in acute and chronic portal hypertension. Hepatology. 1993 Jun;17(6):1081–1085. [PubMed] [Google Scholar]
  11. Glaser K. B., Sung A., Bauer J., Weichman B. M. Regulation of eicosanoid biosynthesis in the macrophage. Involvement of protein tyrosine phosphorylation and modulation by selective protein tyrosine kinase inhibitors. Biochem Pharmacol. 1993 Feb 9;45(3):711–721. doi: 10.1016/0006-2952(93)90147-o. [DOI] [PubMed] [Google Scholar]
  12. Gross S. S., Jaffe E. A., Levi R., Kilbourn R. G. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun. 1991 Aug 15;178(3):823–829. doi: 10.1016/0006-291x(91)90965-a. [DOI] [PubMed] [Google Scholar]
  13. Hibbs J. B., Jr, Westenfelder C., Taintor R., Vavrin Z., Kablitz C., Baranowski R. L., Ward J. H., Menlove R. L., McMurry M. P., Kushner J. P. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J Clin Invest. 1992 Mar;89(3):867–877. doi: 10.1172/JCI115666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson J., Brigham K. L., Jesmok G., Meyrick B. Morphologic changes in lungs of anesthetized sheep following intravenous infusion of recombinant tumor necrosis factor alpha. Am Rev Respir Dis. 1991 Jul;144(1):179–186. doi: 10.1164/ajrccm/144.1.179. [DOI] [PubMed] [Google Scholar]
  15. Kelley J. Cytokines of the lung. Am Rev Respir Dis. 1990 Mar;141(3):765–788. doi: 10.1164/ajrccm/141.3.765. [DOI] [PubMed] [Google Scholar]
  16. Khoruts A., Stahnke L., McClain C. J., Logan G., Allen J. I. Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients. Hepatology. 1991 Feb;13(2):267–276. [PubMed] [Google Scholar]
  17. Kilbourn R. G., Belloni P. Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst. 1990 May 2;82(9):772–776. doi: 10.1093/jnci/82.9.772. [DOI] [PubMed] [Google Scholar]
  18. Kilbourn R. G., Griffith O. W. Overproduction of nitric oxide in cytokine-mediated and septic shock. J Natl Cancer Inst. 1992 Jun 3;84(11):827–831. doi: 10.1093/jnci/84.11.827. [DOI] [PubMed] [Google Scholar]
  19. Kilbourn R. G., Gross S. S., Jubran A., Adams J., Griffith O. W., Levi R., Lodato R. F. NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci U S A. 1990 May;87(9):3629–3632. doi: 10.1073/pnas.87.9.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee F. Y., Albillos A., Colombato L. A., Groszmann R. J. The role of nitric oxide in the vascular hyporesponsiveness to methoxamine in portal hypertensive rats. Hepatology. 1992 Oct;16(4):1043–1048. doi: 10.1002/hep.1840160430. [DOI] [PubMed] [Google Scholar]
  21. Levitzki A. Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. FASEB J. 1992 Nov;6(14):3275–3282. doi: 10.1096/fasebj.6.14.1426765. [DOI] [PubMed] [Google Scholar]
  22. Lopez-Talavera J. C., Cadelina G., Olchowski J., Merrill W., Groszmann R. J. Thalidomide inhibits tumor necrosis factor alpha, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal-hypertensive rats. Hepatology. 1996 Jun;23(6):1616–1621. doi: 10.1002/hep.510230644. [DOI] [PubMed] [Google Scholar]
  23. Lopez-Talavera J. C., Merrill W. W., Groszmann R. J. Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. Gastroenterology. 1995 Mar;108(3):761–767. doi: 10.1016/0016-5085(95)90449-2. [DOI] [PubMed] [Google Scholar]
  24. Mehta R., Gottstein J., Zeller W. P., Lichtenberg R., Blei A. T. Endotoxin and the hyperdynamic circulation of portal vein-ligated rats. Hepatology. 1990 Nov;12(5):1152–1156. doi: 10.1002/hep.1840120513. [DOI] [PubMed] [Google Scholar]
  25. Meydan N., Grunberger T., Dadi H., Shahar M., Arpaia E., Lapidot Z., Leeder J. S., Freedman M., Cohen A., Gazit A. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature. 1996 Feb 15;379(6566):645–648. doi: 10.1038/379645a0. [DOI] [PubMed] [Google Scholar]
  26. Novogrodsky A., Vanichkin A., Patya M., Gazit A., Osherov N., Levitzki A. Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science. 1994 May 27;264(5163):1319–1322. doi: 10.1126/science.8191285. [DOI] [PubMed] [Google Scholar]
  27. Old L. J. Tumor necrosis factor (TNF). Science. 1985 Nov 8;230(4726):630–632. doi: 10.1126/science.2413547. [DOI] [PubMed] [Google Scholar]
  28. Parrillo J. E. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993 May 20;328(20):1471–1477. doi: 10.1056/NEJM199305203282008. [DOI] [PubMed] [Google Scholar]
  29. Pizcueta M. P., Piqué J. M., Bosch J., Whittle B. J., Moncada S. Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension. Br J Pharmacol. 1992 Jan;105(1):184–190. doi: 10.1111/j.1476-5381.1992.tb14233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pizcueta P., Piqué J. M., Fernández M., Bosch J., Rodés J., Whittle B. J., Moncada S. Modulation of the hyperdynamic circulation of cirrhotic rats by nitric oxide inhibition. Gastroenterology. 1992 Dec;103(6):1909–1915. doi: 10.1016/0016-5085(92)91451-9. [DOI] [PubMed] [Google Scholar]
  31. Sieber C. C., Lopez-Talavera J. C., Groszmann R. J. Role of nitric oxide in the in vitro splanchnic vascular hyporeactivity in ascitic cirrhotic rats. Gastroenterology. 1993 Jun;104(6):1750–1754. doi: 10.1016/0016-5085(93)90655-v. [DOI] [PubMed] [Google Scholar]
  32. Sorell W. T., Quigley E. M., Jin G., Johnson T. J., Rikkers L. F. Bacterial translocation in the portal-hypertensive rat: studies in basal conditions and on exposure to hemorrhagic shock. Gastroenterology. 1993 Jun;104(6):1722–1726. doi: 10.1016/0016-5085(93)90651-r. [DOI] [PubMed] [Google Scholar]
  33. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  34. Stephens K. E., Ishizaka A., Larrick J. W., Raffin T. A. Tumor necrosis factor causes increased pulmonary permeability and edema. Comparison to septic acute lung injury. Am Rev Respir Dis. 1988 Jun;137(6):1364–1370. doi: 10.1164/ajrccm/137.6.1364. [DOI] [PubMed] [Google Scholar]
  35. Tartaglia L. A., Rothe M., Hu Y. F., Goeddel D. V. Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell. 1993 Apr 23;73(2):213–216. doi: 10.1016/0092-8674(93)90222-c. [DOI] [PubMed] [Google Scholar]
  36. Tilg H., Wilmer A., Vogel W., Herold M., Nölchen B., Judmaier G., Huber C. Serum levels of cytokines in chronic liver diseases. Gastroenterology. 1992 Jul;103(1):264–274. doi: 10.1016/0016-5085(92)91122-k. [DOI] [PubMed] [Google Scholar]
  37. Vietor I., Schwenger P., Li W., Schlessinger J., Vilcek J. Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblasts. J Biol Chem. 1993 Sep 5;268(25):18994–18999. [PubMed] [Google Scholar]
  38. Weinstein S. L., Gold M. R., DeFranco A. L. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4148–4152. doi: 10.1073/pnas.88.10.4148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Whittle B. J., Moncada S. Nitric oxide: the elusive mediator of the hyperdynamic circulation of cirrhosis? Hepatology. 1992 Oct;16(4):1089–1092. doi: 10.1002/hep.1840160437. [DOI] [PubMed] [Google Scholar]
  40. Yoneda T., Lyall R. M., Alsina M. M., Persons P. E., Spada A. P., Levitzki A., Zilberstein A., Mundy G. R. The antiproliferative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res. 1991 Aug 15;51(16):4430–4435. [PubMed] [Google Scholar]
  41. Yoshioka K., Kakumu S., Arao M., Tsutsumi Y., Inoue M. Tumor necrosis factor alpha production by peripheral blood mononuclear cells of patients with chronic liver disease. Hepatology. 1989 Nov;10(5):769–773. doi: 10.1002/hep.1840100504. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES