Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):678–684. doi: 10.1172/JCI119580

Improvement in endothelial function by angiotensin converting enzyme inhibition in insulin-dependent diabetes mellitus.

G O'Driscoll 1, D Green 1, J Rankin 1, K Stanton 1, R Taylor 1
PMCID: PMC508237  PMID: 9239416

Abstract

We postulated that nitric oxide (NO)-mediated endothelial function would be improved by acute and short-term treatment with an angiotensin converting enzyme (ACE) inhibitor in patients with type I diabetes mellitus, in whom endothelial function is depressed. Nine type I diabetic patients and eight healthy subjects underwent forearm blood flow measurement using strain gauge plethysmography during intraarterial infusion of incremental doses of endothelium-dependent (acetylcholine [ACh]) and endothelium-independent (sodium nitroprusside [SNP]) vasodilators. Pretreatment ACh responses were depressed in diabetic patients relative to the normal subjects (P < 0.05). No difference between the groups was evident in response to SNP. Acute ACE inhibition (with intrabrachial enalaprilat) enhanced ACh responses in the diabetic patients (P < 0.005), with a further improvement evident after 1 mo of oral therapy with enalapril (P < 0.001) when ACh responses were normalized. ACE inhibition did not affect SNP responses. We conclude that acute administration of the ACE inhibitor, enalaprilat, enhances NO-mediated endothelial function in type I diabetic patients, with further improvement evident after 4 wk of enalapril therapy.

Full Text

The Full Text of this article is available as a PDF (160.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli S. P. Captopril scavenges hydrogen peroxide and reduces, but does not eliminate, oxidant-induced cell injury. Am J Physiol. 1993 Jan;264(1 Pt 2):F120–F127. doi: 10.1152/ajprenal.1993.264.1.F120. [DOI] [PubMed] [Google Scholar]
  2. Antony I., Lerebours G., Nitenberg A. Angiotensin-converting enzyme inhibition restores flow-dependent and cold pressor test-induced dilations in coronary arteries of hypertensive patients. Circulation. 1996 Dec 15;94(12):3115–3122. doi: 10.1161/01.cir.94.12.3115. [DOI] [PubMed] [Google Scholar]
  3. Auch-Schwelk W., Duske E., Claus M., Graf K., Gräfe M., Fleck E. Endothelium-mediated vasodilation during ACE inhibition. Eur Heart J. 1995 May;16 (Suppl 100):59–65. doi: 10.1093/eurheartj/16.suppl_c.59. [DOI] [PubMed] [Google Scholar]
  4. Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
  5. Benjamin N., Calver A., Collier J., Robinson B., Vallance P., Webb D. Measuring forearm blood flow and interpreting the responses to drugs and mediators. Hypertension. 1995 May;25(5):918–923. doi: 10.1161/01.hyp.25.5.918. [DOI] [PubMed] [Google Scholar]
  6. Bijlstra P. J., Smits P., Lutterman J. A., Thien T. Effect of long-term angiotensin-converting enzyme inhibition on endothelial function in patients with the insulin-resistance syndrome. J Cardiovasc Pharmacol. 1995 Apr;25(4):658–664. doi: 10.1097/00005344-199504000-00021. [DOI] [PubMed] [Google Scholar]
  7. Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
  8. Bucala R., Tracey K. J., Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest. 1991 Feb;87(2):432–438. doi: 10.1172/JCI115014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Calver A., Collier J., Moncada S., Vallance P. Effect of local intra-arterial NG-monomethyl-L-arginine in patients with hypertension: the nitric oxide dilator mechanism appears abnormal. J Hypertens. 1992 Sep;10(9):1025–1031. [PubMed] [Google Scholar]
  10. Calver A., Collier J., Vallance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest. 1992 Dec;90(6):2548–2554. doi: 10.1172/JCI116149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Celermajer D. S., Adams M. R., Clarkson P., Robinson J., McCredie R., Donald A., Deanfield J. E. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med. 1996 Jan 18;334(3):150–154. doi: 10.1056/NEJM199601183340303. [DOI] [PubMed] [Google Scholar]
  12. Celermajer D. S., Sorensen K. E., Bull C., Robinson J., Deanfield J. E. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol. 1994 Nov 15;24(6):1468–1474. doi: 10.1016/0735-1097(94)90141-4. [DOI] [PubMed] [Google Scholar]
  13. Celermajer D. S., Sorensen K. E., Georgakopoulos D., Bull C., Thomas O., Robinson J., Deanfield J. E. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation. 1993 Nov;88(5 Pt 1):2149–2155. doi: 10.1161/01.cir.88.5.2149. [DOI] [PubMed] [Google Scholar]
  14. Celermajer D. S., Sorensen K. E., Spiegelhalter D. J., Georgakopoulos D., Robinson J., Deanfield J. E. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994 Aug;24(2):471–476. doi: 10.1016/0735-1097(94)90305-0. [DOI] [PubMed] [Google Scholar]
  15. Chowienczyk P. J., Watts G. F., Cockcroft J. R., Ritter J. M. Impaired endothelium-dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet. 1992 Dec 12;340(8833):1430–1432. doi: 10.1016/0140-6736(92)92621-l. [DOI] [PubMed] [Google Scholar]
  16. Clapperton M., McMurray J., Fisher A. C., Dargie H. J. The effect of angiotensin-converting enzyme inhibitors on human neutrophil chemotaxis in vitro. Br J Clin Pharmacol. 1994 Jul;38(1):53–56. doi: 10.1111/j.1365-2125.1994.tb04321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Drexler H., Kurz S., Jeserich M., Münzel T., Hornig B. Effect of chronic angiotensin-converting enzyme inhibition on endothelial function in patients with chronic heart failure. Am J Cardiol. 1995 Nov 24;76(15):13E–18E. [PubMed] [Google Scholar]
  18. Elliott T. G., Cockcroft J. R., Groop P. H., Viberti G. C., Ritter J. M. Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with microalbuminuria. Clin Sci (Lond) 1993 Dec;85(6):687–693. doi: 10.1042/cs0850687. [DOI] [PubMed] [Google Scholar]
  19. Farhy R. D., Ho K. L., Carretero O. A., Scicli A. G. Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun. 1992 Jan 15;182(1):283–288. doi: 10.1016/s0006-291x(05)80142-1. [DOI] [PubMed] [Google Scholar]
  20. Fennessy P. A., Campbell J. H., Campbell G. R. Perindopril inhibits both the development of atherosclerosis in the cholesterol-fed rabbit and lipoprotein binding to smooth muscle cells in culture. Atherosclerosis. 1994 Mar;106(1):29–41. doi: 10.1016/0021-9150(94)90080-9. [DOI] [PubMed] [Google Scholar]
  21. Green D. J., Fowler D. T., O'Driscoll J. G., Blanksby B. A., Taylor R. R. Endothelium-derived nitric oxide activity in forearm vessels of tennis players. J Appl Physiol (1985) 1996 Aug;81(2):943–948. doi: 10.1152/jappl.1996.81.2.943. [DOI] [PubMed] [Google Scholar]
  22. Green D., O'Driscoll G., Blanksby B., Taylor R. Lack of effect of vitamin E administration on basal nitric oxide function in male smokers and non-smokers. Clin Sci (Lond) 1995 Oct;89(4):343–348. doi: 10.1042/cs0890343. [DOI] [PubMed] [Google Scholar]
  23. Haklar G., Erşahin C., Moini H., Süngün M., Dogan N., Bilsel S., Emerk K., Yalçin A. S. Protective effects of cilazapril against free radical injury in myocardial ischaemia-reperfusion. Pharmacol Res. 1995 Jan;31(1):33–36. doi: 10.1016/1043-6618(95)80044-1. [DOI] [PubMed] [Google Scholar]
  24. Halkin A., Benjamin N., Doktor H. S., Todd S. D., Viberti G., Ritter J. M. Vascular responsiveness and cation exchange in insulin-dependent diabetes. Clin Sci (Lond) 1991 Aug;81(2):223–232. doi: 10.1042/cs0810223. [DOI] [PubMed] [Google Scholar]
  25. Hirooka Y., Imaizumi T., Masaki H., Ando S., Harada S., Momohara M., Takeshita A. Captopril improves impaired endothelium-dependent vasodilation in hypertensive patients. Hypertension. 1992 Aug;20(2):175–180. doi: 10.1161/01.hyp.20.2.175. [DOI] [PubMed] [Google Scholar]
  26. Johnstone M. T., Creager S. J., Scales K. M., Cusco J. A., Lee B. K., Creager M. A. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993 Dec;88(6):2510–2516. doi: 10.1161/01.cir.88.6.2510. [DOI] [PubMed] [Google Scholar]
  27. Kaufman M. J. Comparison of the free radical-scavenging ability of captopril and ascorbic acid in an in-vitro model of lipid oxidation. Implications for reperfusion injury and ACE inhibitor therapy. J Pharm Pharmacol. 1994 Mar;46(3):217–220. doi: 10.1111/j.2042-7158.1994.tb03782.x. [DOI] [PubMed] [Google Scholar]
  28. Kawamura M., Heinecke J. W., Chait A. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. J Clin Invest. 1994 Aug;94(2):771–778. doi: 10.1172/JCI117396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Laffel L. M., McGill J. B., Gans D. J. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med. 1995 Nov;99(5):497–504. doi: 10.1016/s0002-9343(99)80226-5. [DOI] [PubMed] [Google Scholar]
  30. Mancini G. B., Henry G. C., Macaya C., O'Neill B. J., Pucillo A. L., Carere R. G., Wargovich T. J., Mudra H., Lüscher T. F., Klibaner M. I. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation. 1996 Aug 1;94(3):258–265. doi: 10.1161/01.cir.94.3.258. [DOI] [PubMed] [Google Scholar]
  31. McVeigh G. E., Brennan G. M., Johnston G. D., McDermott B. J., McGrath L. T., Henry W. R., Andrews J. W., Hayes J. R. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992 Aug;35(8):771–776. doi: 10.1007/BF00429099. [DOI] [PubMed] [Google Scholar]
  32. Mira M. L., Silva M. M., Queiroz M. J., Manso C. F. Angiotensin converting enzyme inhibitors as oxygen free radical scavengers. Free Radic Res Commun. 1993;19(3):173–181. doi: 10.3109/10715769309111600. [DOI] [PubMed] [Google Scholar]
  33. Nakamura M., Funakoshi T., Arakawa N., Yoshida H., Makita S., Hiramori K. Effect of angiotensin-converting enzyme inhibitors on endothelium-dependent peripheral vasodilation in patients with chronic heart failure. J Am Coll Cardiol. 1994 Nov 1;24(5):1321–1327. doi: 10.1016/0735-1097(94)90115-5. [DOI] [PubMed] [Google Scholar]
  34. Nakamura M., Funakoshi T., Yoshida H., Arakawa N., Suzuki T., Hiramori K. Endothelium-dependent vasodilation is augmented by angiotensin converting enzyme inhibitors in healthy volunteers. J Cardiovasc Pharmacol. 1992 Dec;20(6):949–954. doi: 10.1097/00005344-199212000-00015. [DOI] [PubMed] [Google Scholar]
  35. Nitenberg A., Valensi P., Sachs R., Dali M., Aptecar E., Attali J. R. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes. 1993 Jul;42(7):1017–1025. doi: 10.2337/diab.42.7.1017. [DOI] [PubMed] [Google Scholar]
  36. Petrie J. R., Ueda S., Webb D. J., Elliott H. L., Connell J. M. Endothelial nitric oxide production and insulin sensitivity. A physiological link with implications for pathogenesis of cardiovascular disease. Circulation. 1996 Apr 1;93(7):1331–1333. doi: 10.1161/01.cir.93.7.1331. [DOI] [PubMed] [Google Scholar]
  37. Rajagopalan S., Harrison D. G. Reversing endothelial dysfunction with ACE inhibitors. A new trend. Circulation. 1996 Aug 1;94(3):240–243. doi: 10.1161/01.cir.94.3.240. [DOI] [PubMed] [Google Scholar]
  38. Rajagopalan S., Kurz S., Münzel T., Tarpey M., Freeman B. A., Griendling K. K., Harrison D. G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996 Apr 15;97(8):1916–1923. doi: 10.1172/JCI118623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reddy K. G., Nair R. N., Sheehan H. M., Hodgson J. M. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol. 1994 Mar 15;23(4):833–843. doi: 10.1016/0735-1097(94)90627-0. [DOI] [PubMed] [Google Scholar]
  40. Scherrer U., Randin D., Vollenweider P., Vollenweider L., Nicod P. Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest. 1994 Dec;94(6):2511–2515. doi: 10.1172/JCI117621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smits P., Kapma J. A., Jacobs M. C., Lutterman J., Thien T. Endothelium-dependent vascular relaxation in patients with type I diabetes. Diabetes. 1993 Jan;42(1):148–153. doi: 10.2337/diab.42.1.148. [DOI] [PubMed] [Google Scholar]
  42. Taddei S., Virdis A., Mattei P., Natali A., Ferrannini E., Salvetti A. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation. 1995 Nov 15;92(10):2911–2918. doi: 10.1161/01.cir.92.10.2911. [DOI] [PubMed] [Google Scholar]
  43. Tesfamariam B., Brown M. L., Deykin D., Cohen R. A. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest. 1990 Mar;85(3):929–932. doi: 10.1172/JCI114521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ting H. H., Timimi F. K., Boles K. S., Creager S. J., Ganz P., Creager M. A. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996 Jan 1;97(1):22–28. doi: 10.1172/JCI118394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Torlone E., Britta M., Rambotti A. M., Perriello G., Santeusanio F., Brunetti P., Bolli G. B. Improved insulin action and glycemic control after long-term angiotensin-converting enzyme inhibition in subjects with arterial hypertension and type II diabetes. Diabetes Care. 1993 Oct;16(10):1347–1355. doi: 10.2337/diacare.16.10.1347. [DOI] [PubMed] [Google Scholar]
  46. Vanhoutte P. M., Boulanger C. M., Mombouli J. V. Endothelium-derived relaxing factors and converting enzyme inhibition. Am J Cardiol. 1995 Nov 24;76(15):3E–12E. [PubMed] [Google Scholar]
  47. Viberti G., Mogensen C. E., Groop L. C., Pauls J. F. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA. 1994 Jan 26;271(4):275–279. [PubMed] [Google Scholar]
  48. Williams S. B., Cusco J. A., Roddy M. A., Johnstone M. T., Creager M. A. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996 Mar 1;27(3):567–574. doi: 10.1016/0735-1097(95)00522-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES