Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):685–692. doi: 10.1172/JCI119581

Barrier effects of hyperosmolar signaling in microvascular endothelium of rat lung.

R Ragette 1, C Fu 1, J Bhattacharya 1
PMCID: PMC508238  PMID: 9239417

Abstract

We determined the effects of hyperosmolarity on lung microvascular barrier properties by means of the split-drop technique in single venular capillaries of the isolated, blood-perfused rat lung. Using isosmolar and hyperosmolar test solutions (colloid osmotic pressure = 21 cm H2O), we quantified transcapillary flux at a fixed absorptive capillary pressure, and the capillary hydraulic conductivity (Lp). Loss of barrier function was indicated in flux reversal from isosmolar absorption to hyperosmolar filtration (P < 0. 01), and by hyperosmolarity-induced Lp increase (P < 0.01). Barrier recovery after a 1-min hyperosmolar exposure was delayed > 25 min. The flux reversal was blocked by the tyrosine kinase inhibitors genistein and MDC (P < 0.01). Genistein also inhibited the Lp increase (P < 0.01). Immunoblots of hyperosmolarity-exposed, cultured rat lung microvascular endothelial cells (RLMEC) and of endothelial cells freshly harvested from lungs given hyperosmolar infusions indicated a genistein-inhibitable enhancement of protein tyrosine phosphorylation. Immunoprecipitation studies indicated tyrosine phosphorylation of the mitogen activated protein kinases (MAPK) ERK1 and ERK2 and the adaptor protein Shc in lysates of RLMEC exposed to hyperosmolar conditions. We conclude that in lung venular capillaries hyperosmolarity deteriorates barrier properties, possibly by inducing tyrosine phosphorylation of endothelial proteins.

Full Text

The Full Text of this article is available as a PDF (305.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayajiki K., Kindermann M., Hecker M., Fleming I., Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res. 1996 May;78(5):750–758. doi: 10.1161/01.res.78.5.750. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharya J., Gropper M. A., Staub N. C. Interstitial fluid pressure gradient measured by micropuncture in excised dog lung. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):271–277. doi: 10.1152/jappl.1984.56.2.271. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharya J. Hydraulic conductivity of lung venules determined by split-drop technique. J Appl Physiol (1985) 1988 Jun;64(6):2562–2567. doi: 10.1152/jappl.1988.64.6.2562. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharya S., Fu C., Bhattacharya J., Greenberg S. Soluble ligands of the alpha v beta 3 integrin mediate enhanced tyrosine phosphorylation of multiple proteins in adherent bovine pulmonary artery endothelial cells. J Biol Chem. 1995 Jul 14;270(28):16781–16787. doi: 10.1074/jbc.270.28.16781. [DOI] [PubMed] [Google Scholar]
  5. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. doi: 10.1126/science.7681220. [DOI] [PubMed] [Google Scholar]
  6. Folkesson H. G., Matthay M. A., Hasegawa H., Kheradmand F., Verkman A. S. Transcellular water transport in lung alveolar epithelium through mercury-sensitive water channels. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4970–4974. doi: 10.1073/pnas.91.11.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Granger D. N., Granger J. P., Brace R. A., Parker R. E., Taylor A. E. Analysis of the permeability characteristics of cat intestinal capillaries. Circ Res. 1979 Mar;44(3):335–344. doi: 10.1161/01.res.44.3.335. [DOI] [PubMed] [Google Scholar]
  8. Han J., Lee J. D., Bibbs L., Ulevitch R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug 5;265(5173):808–811. doi: 10.1126/science.7914033. [DOI] [PubMed] [Google Scholar]
  9. Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991 Oct;3(5):841–848. doi: 10.1016/0955-0674(91)90058-7. [DOI] [PubMed] [Google Scholar]
  10. Klein J. D., O'Neill W. C. Volume-sensitive myosin phosphorylation in vascular endothelial cells: correlation with Na-K-2Cl cotransport. Am J Physiol. 1995 Dec;269(6 Pt 1):C1524–C1531. doi: 10.1152/ajpcell.1995.269.6.C1524. [DOI] [PubMed] [Google Scholar]
  11. McDonald D. M. Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. Am J Physiol. 1994 Jan;266(1 Pt 1):L61–L83. doi: 10.1152/ajplung.1994.266.1.L61. [DOI] [PubMed] [Google Scholar]
  12. Miltenyi S., Müller W., Weichel W., Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11(2):231–238. doi: 10.1002/cyto.990110203. [DOI] [PubMed] [Google Scholar]
  13. Miyamoto S., Teramoto H., Coso O. A., Gutkind J. S., Burbelo P. D., Akiyama S. K., Yamada K. M. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995 Nov;131(3):791–805. doi: 10.1083/jcb.131.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Neill W. C., Klein J. D. Regulation of vascular endothelial cell volume by Na-K-2Cl cotransport. Am J Physiol. 1992 Feb;262(2 Pt 1):C436–C444. doi: 10.1152/ajpcell.1992.262.2.C436. [DOI] [PubMed] [Google Scholar]
  15. Oda A., Yokoyama K., Murata M., Tokuhira M., Nakamura K., Handa M., Watanabe K., Ikeda Y. Protein tyrosine phosphorylation in human platelets during shear stress-induced platelet aggregation (SIPA) is regulated by glycoprotein (GP) Ib/IX as well as GP IIb/IIIa and requires intact cytoskeleton and endogenous ADP. Thromb Haemost. 1995 Aug;74(2):736–742. [PubMed] [Google Scholar]
  16. Oyama M. cGMP accumulation induced by hypertonic stress in Dictyostelium discoideum. J Biol Chem. 1996 Mar 8;271(10):5574–5579. [PubMed] [Google Scholar]
  17. Qiao R. L., Bhattacharya J. Segmental barrier properties of the pulmonary microvascular bed. J Appl Physiol (1985) 1991 Dec;71(6):2152–2159. doi: 10.1152/jappl.1991.71.6.2152. [DOI] [PubMed] [Google Scholar]
  18. Rapoport S. I., Fredericks W. R., Ohno K., Pettigrew K. D. Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am J Physiol. 1980 May;238(5):R421–R431. doi: 10.1152/ajpregu.1980.238.5.R421. [DOI] [PubMed] [Google Scholar]
  19. Rasio E. A., Bendayan M., Goresky C. A. The effect of hyperosmolality on the permeability and structure of the capillaries of the isolated rete mirabile of the eel. Circ Res. 1981 Sep;49(3):661–676. doi: 10.1161/01.res.49.3.661. [DOI] [PubMed] [Google Scholar]
  20. Santell L., Rubin R. L., Levin E. G. Enhanced phosphorylation and dephosphorylation of a histone-like protein in response to hyperosmotic and hypoosmotic conditions. J Biol Chem. 1993 Oct 5;268(28):21443–21447. [PubMed] [Google Scholar]
  21. Schnitzer J. E., Oh P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H416–H422. doi: 10.1152/ajpheart.1996.270.1.H416. [DOI] [PubMed] [Google Scholar]
  22. Schüller C., Brewster J. L., Alexander M. R., Gustin M. C., Ruis H. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 1994 Sep 15;13(18):4382–4389. doi: 10.1002/j.1460-2075.1994.tb06758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shepard J. M., Goderie S. K., Brzyski N., Del Vecchio P. J., Malik A. B., Kimelberg H. K. Effects of alterations in endothelial cell volume on transendothelial albumin permeability. J Cell Physiol. 1987 Nov;133(2):389–394. doi: 10.1002/jcp.1041330226. [DOI] [PubMed] [Google Scholar]
  24. Suttorp N., Polley M., Seybold J., Schnittler H., Seeger W., Grimminger F., Aktories K. Adenosine diphosphate-ribosylation of G-actin by botulinum C2 toxin increases endothelial permeability in vitro. J Clin Invest. 1991 May;87(5):1575–1584. doi: 10.1172/JCI115171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taylor A. E., Gaar K. A., Jr Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am J Physiol. 1970 Apr;218(4):1133–1140. doi: 10.1152/ajplegacy.1970.218.4.1133. [DOI] [PubMed] [Google Scholar]
  26. Thomas D., Patterson S. D., Bradshaw R. A. Src homologous and collagen (Shc) protein binds to F-actin and translocates to the cytoskeleton upon nerve growth factor stimulation in PC12 cells. J Biol Chem. 1995 Dec 1;270(48):28924–28931. doi: 10.1074/jbc.270.48.28924. [DOI] [PubMed] [Google Scholar]
  27. Tokishita S., Mizuno T. Transmembrane signal transduction by the Escherichia coli osmotic sensor, EnvZ: intermolecular complementation of transmembrane signalling. Mol Microbiol. 1994 Aug;13(3):435–444. doi: 10.1111/j.1365-2958.1994.tb00438.x. [DOI] [PubMed] [Google Scholar]
  28. Tsukada H., Ying X., Fu C., Ishikawa S., McKeown-Longo P., Albelda S., Bhattacharya S., Bray B. A., Bhattacharya J. Ligation of endothelial alpha v beta 3 integrin increases capillary hydraulic conductivity of rat lung. Circ Res. 1995 Oct;77(4):651–659. doi: 10.1161/01.res.77.4.651. [DOI] [PubMed] [Google Scholar]
  29. Wilson E., Sudhir K., Ives H. E. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest. 1995 Nov;96(5):2364–2372. doi: 10.1172/JCI118293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yano Y., Geibel J., Sumpio B. E. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am J Physiol. 1996 Aug;271(2 Pt 1):C635–C649. doi: 10.1152/ajpcell.1996.271.2.C635. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES