Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):705–712. doi: 10.1172/JCI119583

Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier.

K Hanley 1, Y Jiang 1, D Crumrine 1, N M Bass 1, R Appel 1, P M Elias 1, M L Williams 1, K R Feingold 1
PMCID: PMC508240  PMID: 9239419

Abstract

Members of the superfamily of nuclear hormone receptors which are obligate heterodimeric partners of the retinoid X receptor may be important in epidermal development. Here, we examined the effects of activators of the receptors for vitamin D3 and retinoids, and of the peroxisome proliferator activated receptors (PPARs) and the farnesoid X-activated receptor (FXR), on the development of the fetal epidermal barrier in vitro. Skin explants from gestational day 17 rats (term is 22 d) are unstratified and lack a stratum corneum (SC). After incubation in hormone-free media for 3-4 d, a multilayered SC replete with mature lamellar membranes in the interstices and a functionally competent barrier appear. 9-cis or all-trans retinoic acid, 1,25 dihydroxyvitamin D3, or the PPARgamma ligands prostaglandin J2 or troglitazone did not affect the development of barrier function or epidermal morphology. In contrast, activators of the PPARalpha, oleic acid, linoleic acid, and clofibrate, accelerated epidermal development, resulting in mature lamellar membranes, a multilayered SC, and a competent barrier after 2 d of incubation. The FXR activators, all-trans farnesol and juvenile hormone III, also accelerated epidermal barrier development. Activities of beta-glucocerebrosidase and steroid sulfatase, enzymes previously linked to barrier maturation, also increased after treatment with PPARalpha and FXR activators. In contrast, isoprenoids, such as nerolidol, cis-farnesol, or geranylgeraniol, or metabolites in the cholesterol pathway, such as mevalonate, squalene, or 25-hydroxycholesterol, did not alter barrier development. Finally, additive effects were observed in explants incubated with clofibrate and farnesol together in suboptimal concentrations which alone did not affect barrier development. These data indicate a putative physiologic role for PPARalpha and FXR in epidermal barrier development.

Full Text

The Full Text of this article is available as a PDF (637.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aszterbaum M., Feingold K. R., Menon G. K., Williams M. L. Glucocorticoids accelerate fetal maturation of the epidermal permeability barrier in the rat. J Clin Invest. 1993 Jun;91(6):2703–2708. doi: 10.1172/JCI116509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aszterbaum M., Menon G. K., Feingold K. R., Williams M. L. Ontogeny of the epidermal barrier to water loss in the rat: correlation of function with stratum corneum structure and lipid content. Pediatr Res. 1992 Apr;31(4 Pt 1):308–317. doi: 10.1203/00006450-199204000-00002. [DOI] [PubMed] [Google Scholar]
  3. Ballard P. L. Hormonal regulation of pulmonary surfactant. Endocr Rev. 1989 May;10(2):165–181. doi: 10.1210/edrv-10-2-165. [DOI] [PubMed] [Google Scholar]
  4. Bocos C., Göttlicher M., Gearing K., Banner C., Enmark E., Teboul M., Crickmore A., Gustafsson J. A. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR). J Steroid Biochem Mol Biol. 1995 Jun;53(1-6):467–473. doi: 10.1016/0960-0760(95)00093-f. [DOI] [PubMed] [Google Scholar]
  5. Correll C. C., Ng L., Edwards P. A. Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 1994 Jul 1;269(26):17390–17393. [PubMed] [Google Scholar]
  6. Devchand P. R., Keller H., Peters J. M., Vazquez M., Gonzalez F. J., Wahli W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature. 1996 Nov 7;384(6604):39–43. doi: 10.1038/384039a0. [DOI] [PubMed] [Google Scholar]
  7. Downing D. T. Lipid and protein structures in the permeability barrier of mammalian epidermis. J Lipid Res. 1992 Mar;33(3):301–313. [PubMed] [Google Scholar]
  8. Elias P. M., Friend D. S. Vitamin-A-induced mucous metaplasia. An in vitro system for modulating tight and gap junction differentiation. J Cell Biol. 1976 Feb;68(2):173–188. doi: 10.1083/jcb.68.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elias P. M., Menon G. K. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res. 1991;24:1–26. doi: 10.1016/b978-0-12-024924-4.50005-5. [DOI] [PubMed] [Google Scholar]
  10. FELL H. B., MELLANBY E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J Physiol. 1953 Mar;119(4):470–488. doi: 10.1113/jphysiol.1953.sp004860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forman B. M., Goode E., Chen J., Oro A. E., Bradley D. J., Perlmann T., Noonan D. J., Burka L. T., McMorris T., Lamph W. W. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995 Jun 2;81(5):687–693. doi: 10.1016/0092-8674(95)90530-8. [DOI] [PubMed] [Google Scholar]
  12. Forman B. M., Tontonoz P., Chen J., Brun R. P., Spiegelman B. M., Evans R. M. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995 Dec 1;83(5):803–812. doi: 10.1016/0092-8674(95)90193-0. [DOI] [PubMed] [Google Scholar]
  13. Freinkel R. K., Traczyk T. N. Lipid composition and acid hydrolase content of lamellar granules of fetal rat epidermis. J Invest Dermatol. 1985 Oct;85(4):295–298. doi: 10.1111/1523-1747.ep12276831. [DOI] [PubMed] [Google Scholar]
  14. Fringes B., Gorgas K., Reith A. Clofibrate increases the number of peroxisomes and of lamellar bodies in alveolar cells type II of the rat lung. Eur J Cell Biol. 1988 Apr;46(1):136–143. [PubMed] [Google Scholar]
  15. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  16. Hanley K., Jiang Y., Holleran W. M., Elias P. M., Williams M. L., Feingold K. R. Glucosylceramide metabolism is regulated during normal and hormonally stimulated epidermal barrier development in the rat. J Lipid Res. 1997 Mar;38(3):576–584. [PubMed] [Google Scholar]
  17. Hanley K., Jiang Y., Katagiri C., Feingold K. R., Williams M. L. Epidermal steroid sulfatase and cholesterol sulfotransferase are regulated during late gestation in the fetal rat. J Invest Dermatol. 1997 Jun;108(6):871–875. doi: 10.1111/1523-1747.ep12292586. [DOI] [PubMed] [Google Scholar]
  18. Hanley K., Rassner U., Elias P. M., Williams M. L., Feingold K. R. Epidermal barrier ontogenesis: maturation in serum-free media and acceleration by glucocorticoids and thyroid hormone but not selected growth factors. J Invest Dermatol. 1996 Mar;106(3):404–411. doi: 10.1111/1523-1747.ep12343405. [DOI] [PubMed] [Google Scholar]
  19. Hanley K., Rassner U., Jiang Y., Vansomphone D., Crumrine D., Komüves L., Elias P. M., Feingold K. R., Williams M. L. Hormonal basis for the gender difference in epidermal barrier formation in the fetal rat. Acceleration by estrogen and delay by testosterone. J Clin Invest. 1996 Jun 1;97(11):2576–2584. doi: 10.1172/JCI118706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harpin V. A., Rutter N. Barrier properties of the newborn infant's skin. J Pediatr. 1983 Mar;102(3):419–425. doi: 10.1016/s0022-3476(83)80669-6. [DOI] [PubMed] [Google Scholar]
  21. Haug J. S., Goldner C. M., Yazlovitskaya E. M., Voziyan P. A., Melnykovych G. Directed cell killing (apoptosis) in human lymphoblastoid cells incubated in the presence of farnesol: effect of phosphatidylcholine. Biochim Biophys Acta. 1994 Aug 11;1223(1):133–140. doi: 10.1016/0167-4889(94)90082-5. [DOI] [PubMed] [Google Scholar]
  22. Holleran W. M., Takagi Y., Menon G. K., Legler G., Feingold K. R., Elias P. M. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J Clin Invest. 1993 Apr;91(4):1656–1664. doi: 10.1172/JCI116374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holt P. J., Marks R. The epidermal response to change in thyroid status. J Invest Dermatol. 1977 May;68(5):299–301. doi: 10.1111/1523-1747.ep12494564. [DOI] [PubMed] [Google Scholar]
  24. Hurt C. M., Hanley K., Williams M. L., Feingold K. R. Cutaneous lipid synthesis during late fetal development in the rat. Arch Dermatol Res. 1995;287(8):754–760. doi: 10.1007/BF01105801. [DOI] [PubMed] [Google Scholar]
  25. Imakado S., Bickenbach J. R., Bundman D. S., Rothnagel J. A., Attar P. S., Wang X. J., Walczak V. R., Wisniewski S., Pote J., Gordon J. S. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev. 1995 Feb 1;9(3):317–329. doi: 10.1101/gad.9.3.317. [DOI] [PubMed] [Google Scholar]
  26. Imamura T., Takata I., Ogasawara M., Matsutani Y., Yamamoto T., Asagami C. [Clofibrate treatment of psoriasis with hypertriglycemia--clinical, histological and laboratory analysis]. Nihon Hifuka Gakkai Zasshi. 1991 May;101(6):623–628. [PubMed] [Google Scholar]
  27. Kang S., Li X. Y., Voorhees J. J. Pharmacology and molecular action of retinoids and vitamin D in skin. J Investig Dermatol Symp Proc. 1996 Apr;1(1):15–21. [PubMed] [Google Scholar]
  28. Keller H., Dreyer C., Medin J., Mahfoudi A., Ozato K., Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2160–2164. doi: 10.1073/pnas.90.6.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lemberger T., Staels B., Saladin R., Desvergne B., Auwerx J., Wahli W. Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J Biol Chem. 1994 Oct 7;269(40):24527–24530. [PubMed] [Google Scholar]
  30. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  31. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  32. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pillai S., Bikle D. D., Elias P. M. Vitamin D and epidermal differentiation: evidence for a role of endogenously produced vitamin D metabolites in keratinocyte differentiation. Skin Pharmacol. 1988;1(3):149–160. doi: 10.1159/000210769. [DOI] [PubMed] [Google Scholar]
  34. Regnier M., Darmon M. 1,25-Dihydroxyvitamin D3 stimulates specifically the last steps of epidermal differentiation of cultured human keratinocytes. Differentiation. 1991 Aug;47(3):173–188. doi: 10.1111/j.1432-0436.1991.tb00235.x. [DOI] [PubMed] [Google Scholar]
  35. Roullet J. B., Xue H., Chapman J., McDougal P., Roullet C. M., McCarron D. A. Farnesyl analogues inhibit vasoconstriction in animal and human arteries. J Clin Invest. 1996 May 15;97(10):2384–2390. doi: 10.1172/JCI118682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saitou M., Sugai S., Tanaka T., Shimouchi K., Fuchs E., Narumiya S., Kakizuka A. Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature. 1995 Mar 9;374(6518):159–162. doi: 10.1038/374159a0. [DOI] [PubMed] [Google Scholar]
  37. Schellhase D. E., Emrie P. A., Fisher J. H., Shannon J. M. Ontogeny of surfactant apoproteins in the rat. Pediatr Res. 1989 Sep;26(3):167–174. doi: 10.1203/00006450-198909000-00001. [DOI] [PubMed] [Google Scholar]
  38. Schoonjans K., Staels B., Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 1996 May;37(5):907–925. [PubMed] [Google Scholar]
  39. Steineger H. H., Sørensen H. N., Tugwood J. D., Skrede S., Spydevold O., Gautvik K. M. Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty-acid-induced transcription. Eur J Biochem. 1994 Nov 1;225(3):967–974. doi: 10.1111/j.1432-1033.1994.0967b.x. [DOI] [PubMed] [Google Scholar]
  40. Vernon H. J., Lane A. T., Wischerath L. J., Davis J. M., Menegus M. A. Semipermeable dressing and transepidermal water loss in premature infants. Pediatrics. 1990 Sep;86(3):357–362. [PubMed] [Google Scholar]
  41. Voziyan P. A., Goldner C. M., Melnykovych G. Farnesol inhibits phosphatidylcholine biosynthesis in cultured cells by decreasing cholinephosphotransferase activity. Biochem J. 1993 Nov 1;295(Pt 3):757–762. doi: 10.1042/bj2950757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yu K., Bayona W., Kallen C. B., Harding H. P., Ravera C. P., McMahon G., Brown M., Lazar M. A. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem. 1995 Oct 13;270(41):23975–23983. doi: 10.1074/jbc.270.41.23975. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES