Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):713–722. doi: 10.1172/JCI119584

Cytosolic-free calcium increases to greater than 100 micromolar in ATP-depleted proximal tubules.

J M Weinberg 1, J A Davis 1, M A Venkatachalam 1
PMCID: PMC508241  PMID: 9239420

Abstract

Previous studies have shown that cytosolic-free Ca2+ (Caf) increases to at least low micromolar concentrations during ATP depletion of isolated kidney proximal tubules. However, peak levels could not be determined precisely with the Ca2+-sensitive fluorophore, fura-2, because of its high affinity for Ca2+. Now, we have used two low affinity Ca2+ fluorophores, mag-fura-2 (furaptra) and fura-2FF, to quantitate the full magnitude of Caf increase. Between 30 and 60 min after treatment with antimycin to deplete ATP in the presence of glycine to prevent lytic plasma membrane damage, Caf measured with mag-fura-2 exceeded 10 microM in 91% of tubules studied and 68% had increases to greater than 100 microM. Caf increases of similar magnitude that were dependent on influx of medium Ca2+ were also seen using the new low Ca2+ affinity, Mg2+-insensitive, fluorophore fura-2FF in tubules depleted of ATP by hypoxia, and these increases were reversed by reoxygenation. Total cell Ca2+ levels in antimycin-treated or hypoxic tubules did not change, suggesting that mitochondria were not buffering the increased Caf during ATP depletion. Considered in the context of the high degree of structural preservation of glycine-treated tubule cells during ATP depletion and the commonly assumed Ca2+ requirements for phospholipid hydrolysis, actin disassembly, and Ca2+-mediated structural damage, the remarkable elevations of Caf demonstrated here suggest an unexpected resistance to the deleterious effects of increased Caf during energy deprivation in the presence of glycine.

Full Text

The Full Text of this article is available as a PDF (285.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck F. X., Ohno A., Dörge A., Thurau K. Ischemia-induced changes in cell element composition and osmolyte contents of outer medulla. Kidney Int. 1995 Aug;48(2):449–457. doi: 10.1038/ki.1995.313. [DOI] [PubMed] [Google Scholar]
  2. Becker G. L., Fiskum G., Lehninger A. L. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J Biol Chem. 1980 Oct 10;255(19):9009–9012. [PubMed] [Google Scholar]
  3. Bjornstad P. Phospholipase activity in rat liver mitochondria studied by the use of endogenous substrates. J Lipid Res. 1966 Sep;7(5):612–620. [PubMed] [Google Scholar]
  4. Carafoli E. Calcium pump of the plasma membrane. Physiol Rev. 1991 Jan;71(1):129–153. doi: 10.1152/physrev.1991.71.1.129. [DOI] [PubMed] [Google Scholar]
  5. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  6. Cheung J. Y., Bonventre J. V., Malis C. D., Leaf A. Calcium and ischemic injury. N Engl J Med. 1986 Jun 26;314(26):1670–1676. doi: 10.1056/NEJM198606263142604. [DOI] [PubMed] [Google Scholar]
  7. Cobbold P. H., Rink T. J. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J. 1987 Dec 1;248(2):313–328. doi: 10.1042/bj2480313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duran M. A., Spencer D., Weise M., Kronfol N. O., Spencer R. F., Oken D. E. Renal epithelial amino acid concentrations in mercury-induced and postischemic acute renal failure. Toxicol Appl Pharmacol. 1990 Sep 1;105(2):183–194. doi: 10.1016/0041-008x(90)90180-3. [DOI] [PubMed] [Google Scholar]
  9. Farber J. L. Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab Invest. 1982 Aug;47(2):114–123. [PubMed] [Google Scholar]
  10. Garza-Quintero R., Ortega-Lopez J., Stein J. H., Venkatachalam M. A. Alanine protects rabbit proximal tubules against anoxic injury in vitro. Am J Physiol. 1990 Apr;258(4 Pt 2):F1075–F1083. doi: 10.1152/ajprenal.1990.258.4.F1075. [DOI] [PubMed] [Google Scholar]
  11. Garza-Quintero R., Weinberg J. M., Ortega-Lopez J., Davis J. A., Venkatachalam M. A. Conservation of structure in ATP-depleted proximal tubules: role of calcium, polyphosphoinositides, and glycine. Am J Physiol. 1993 Nov;265(5 Pt 2):F605–F623. doi: 10.1152/ajprenal.1993.265.5.F605. [DOI] [PubMed] [Google Scholar]
  12. Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
  13. Greene E. L., Paller M. S. Calcium and free radicals in hypoxia/reoxygenation injury of renal epithelial cells. Am J Physiol. 1994 Jan;266(1 Pt 2):F13–F20. doi: 10.1152/ajprenal.1994.266.1.F13. [DOI] [PubMed] [Google Scholar]
  14. Harman A. W., Nieminen A. L., Lemasters J. J., Herman B. Cytosolic free magnesium, ATP and blebbing during chemical hypoxia in cultured rat hepatocytes. Biochem Biophys Res Commun. 1990 Jul 31;170(2):477–483. doi: 10.1016/0006-291x(90)92116-h. [DOI] [PubMed] [Google Scholar]
  15. Herman B., Gores G. J., Nieminen A. L., Kawanishi T., Harman A., Lemasters J. J. Calcium and pH in anoxic and toxic injury. Crit Rev Toxicol. 1990;21(2):127–148. doi: 10.3109/10408449009089876. [DOI] [PubMed] [Google Scholar]
  16. Heytler P. G. Uncouplers of oxidative phosphorylation. Methods Enzymol. 1979;55:462–442. doi: 10.1016/0076-6879(79)55060-5. [DOI] [PubMed] [Google Scholar]
  17. Hofer A. M., Machen T. E. Direct measurement of free Ca in organelles of gastric epithelial cells. Am J Physiol. 1994 Sep;267(3 Pt 1):G442–G451. doi: 10.1152/ajpgi.1994.267.3.G442. [DOI] [PubMed] [Google Scholar]
  18. Hurley T. W., Ryan M. P., Brinck R. W. Changes of cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2. Am J Physiol. 1992 Aug;263(2 Pt 1):C300–C307. doi: 10.1152/ajpcell.1992.263.2.C300. [DOI] [PubMed] [Google Scholar]
  19. Jacobs W. R., Sgambati M., Gomez G., Vilaro P., Higdon M., Bell P. D., Mandel L. J. Role of cytosolic Ca in renal tubule damage induced by anoxia. Am J Physiol. 1991 Mar;260(3 Pt 1):C545–C554. doi: 10.1152/ajpcell.1991.260.3.C545. [DOI] [PubMed] [Google Scholar]
  20. Joseph J. K., Bunnachak D., Burke T. J., Schrier R. W. A novel method of inducing and assuring total anoxia during in vitro studies of O2 deprivation injury. J Am Soc Nephrol. 1990 Nov;1(5):837–840. doi: 10.1681/ASN.V15837. [DOI] [PubMed] [Google Scholar]
  21. Konishi M., Berlin J. R. Ca transients in cardiac myocytes measured with a low affinity fluorescent indicator, furaptra. Biophys J. 1993 Apr;64(4):1331–1343. doi: 10.1016/S0006-3495(93)81494-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Konishi M., Hollingworth S., Harkins A. B., Baylor S. M. Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra. J Gen Physiol. 1991 Feb;97(2):271–301. doi: 10.1085/jgp.97.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koss K. L., Putnam R. W., Grubbs R. D. Mg2+ buffering in cultured chick ventricular myocytes: quantitation and modulation by Ca2+. Am J Physiol. 1993 May;264(5 Pt 1):C1259–C1269. doi: 10.1152/ajpcell.1993.264.5.C1259. [DOI] [PubMed] [Google Scholar]
  24. Kribben A., Wieder E. D., Wetzels J. F., Yu L., Gengaro P. E., Burke T. J., Schrier R. W. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury. J Clin Invest. 1994 May;93(5):1922–1929. doi: 10.1172/JCI117183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LeFurgey A., Spencer A. J., Jacobs W. R., Ingram P., Mandel L. J. Elemental microanalysis of organelles in proximal tubules. I. Alterations in transport and metabolism. J Am Soc Nephrol. 1991 Jun;1(12):1305–1320. doi: 10.1681/ASN.V1121305. [DOI] [PubMed] [Google Scholar]
  26. Lew P. D., Monod A., Waldvogel F. A., Dewald B., Baggiolini M., Pozzan T. Quantitative analysis of the cytosolic free calcium dependency of exocytosis from three subcellular compartments in intact human neutrophils. J Cell Biol. 1986 Jun;102(6):2197–2204. doi: 10.1083/jcb.102.6.2197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Li H. Y., Dai L. J., Krieger C., Quamme G. A. Intracellular Mg2+ concentrations following metabolic inhibition in opossum kidney cells. Biochim Biophys Acta. 1993 Jun 19;1181(3):307–315. doi: 10.1016/0925-4439(93)90037-2. [DOI] [PubMed] [Google Scholar]
  28. Li H. Y., Dai L. J., Quamme G. A. Effect of chemical hypoxia on intracellular ATP and cytosolic Mg2+ levels. J Lab Clin Med. 1993 Sep;122(3):260–272. [PubMed] [Google Scholar]
  29. McCoy C. E., Selvaggio A. M., Alexander E. A., Schwartz J. H. Adenosine triphosphate depletion induces a rise in cytosolic free calcium in canine renal epithelial cells. J Clin Invest. 1988 Oct;82(4):1326–1332. doi: 10.1172/JCI113734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murphy E. Measurement of intracellular ionized magnesium. Miner Electrolyte Metab. 1993;19(4-5):250–258. [PubMed] [Google Scholar]
  31. Nakamura H., Nemenoff R. A., Gronich J. H., Bonventre J. V. Subcellular characteristics of phospholipase A2 activity in the rat kidney. Enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest. 1991 May;87(5):1810–1818. doi: 10.1172/JCI115202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nicchitta C. V., Williamson J. R. Spermine. A regulator of mitochondrial calcium cycling. J Biol Chem. 1984 Nov 10;259(21):12978–12983. [PubMed] [Google Scholar]
  33. Nicotera P., Bellomo G., Orrenius S. The role of Ca2+ in cell killing. Chem Res Toxicol. 1990 Nov-Dec;3(6):484–494. doi: 10.1021/tx00018a001. [DOI] [PubMed] [Google Scholar]
  34. Nurko S., Sogabe K., Davis J. A., Roeser N. F., Defrain M., Chien A., Hinshaw D., Athey B., Meixner W., Venkatachalam M. A. Contribution of actin cytoskeletal alterations to ATP depletion and calcium-induced proximal tubule cell injury. Am J Physiol. 1996 Jan;270(1 Pt 2):F39–F52. doi: 10.1152/ajprenal.1996.270.1.F39. [DOI] [PubMed] [Google Scholar]
  35. Phelps P. C., Smith M. W., Trump B. F. Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells. Lab Invest. 1989 May;60(5):630–642. [PubMed] [Google Scholar]
  36. Raju B., Murphy E., Levy L. A., Hall R. D., London R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol. 1989 Mar;256(3 Pt 1):C540–C548. doi: 10.1152/ajpcell.1989.256.3.C540. [DOI] [PubMed] [Google Scholar]
  37. Rose U. M., Bindels R. J., Jansen J. W., van Os C. H. Effects of Ca2+ channel blockers, low Ca2+ medium and glycine on cell Ca2+ and injury in anoxic rabbit proximal tubules. Kidney Int. 1994 Jul;46(1):223–229. doi: 10.1038/ki.1994.263. [DOI] [PubMed] [Google Scholar]
  38. Snowdowne K. W., Freudenrich C. C., Borle A. B. The effects of anoxia on cytosolic free calcium, calcium fluxes, and cellular ATP levels in cultured kidney cells. J Biol Chem. 1985 Sep 25;260(21):11619–11626. [PubMed] [Google Scholar]
  39. Sogabe K., Roeser N. F., Davis J. A., Nurko S., Venkatachalam M. A., Weinberg J. M. Calcium dependence of integrity of the actin cytoskeleton of proximal tubule cell microvilli. Am J Physiol. 1996 Aug;271(2 Pt 2):F292–F303. doi: 10.1152/ajprenal.1996.271.2.F292. [DOI] [PubMed] [Google Scholar]
  40. Somlyo A. P., Bond M., Somlyo A. V. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature. 1985 Apr 18;314(6012):622–625. doi: 10.1038/314622a0. [DOI] [PubMed] [Google Scholar]
  41. Spencer A. J., LeFurgey A., Ingram P., Mandel L. J. Elemental microanalysis of organelles in proximal tubules. II. Effects of oxygen deprivation. J Am Soc Nephrol. 1991 Jun;1(12):1321–1333. doi: 10.1681/ASN.V1121321. [DOI] [PubMed] [Google Scholar]
  42. Takano T., Soltoff S. P., Murdaugh S., Mandel L. J. Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules. J Clin Invest. 1985 Dec;76(6):2377–2384. doi: 10.1172/JCI112250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thomas C. E., Reed D. J. Current status of calcium in hepatocellular injury. Hepatology. 1989 Sep;10(3):375–384. doi: 10.1002/hep.1840100322. [DOI] [PubMed] [Google Scholar]
  44. Ukhanov K. Y., Flores T. M., Hsiao H. S., Mohapatra P., Pitts C. H., Payne R. Measurement of cytosolic Ca2+ concentration in Limulus ventral photoreceptors using fluorescent dyes. J Gen Physiol. 1995 Jan;105(1):95–116. doi: 10.1085/jgp.105.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Venkatachalam M. A., Weinberg J. M., Patel Y., Hussong U., Davis J. A. Effects of Ca++ and glycine on lipid breakdown and death of ATP-depleted MDCK cells. Kidney Int. 1995 Jul;48(1):118–128. doi: 10.1038/ki.1995.275. [DOI] [PubMed] [Google Scholar]
  46. Weinberg J. M., Davis J. A., Abarzua M., Kiani T., Kunkel R. Protection by glycine of proximal tubules from injury due to inhibitors of mitochondrial ATP production. Am J Physiol. 1990 Jun;258(6 Pt 1):C1127–C1140. doi: 10.1152/ajpcell.1990.258.6.C1127. [DOI] [PubMed] [Google Scholar]
  47. Weinberg J. M., Davis J. A., Abarzua M., Kiani T. Relationship between cell adenosine triphosphate and glutathione content and protection by glycine against hypoxic proximal tubule cell injury. J Lab Clin Med. 1989 May;113(5):612–622. [PubMed] [Google Scholar]
  48. Weinberg J. M., Davis J. A., Abarzua M., Rajan T. Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules. J Clin Invest. 1987 Nov;80(5):1446–1454. doi: 10.1172/JCI113224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weinberg J. M., Davis J. A., Lawton A., Abarzua M. Modulation of cell nucleotide levels of isolated kidney tubules. Am J Physiol. 1988 Mar;254(3 Pt 2):F311–F322. doi: 10.1152/ajprenal.1988.254.3.F311. [DOI] [PubMed] [Google Scholar]
  50. Weinberg J. M., Davis J. A., Roeser N. F., Venkatachalam M. A. Role of increased cytosolic free calcium in the pathogenesis of rabbit proximal tubule cell injury and protection by glycine or acidosis. J Clin Invest. 1991 Feb;87(2):581–590. doi: 10.1172/JCI115033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weinberg J. M., Davis J. A., Roeser N. F., Venkatachalam M. A. Role of intracellular pH during cytoprotection of proximal tubule cells by glycine or acidosis. J Am Soc Nephrol. 1994 Dec;5(6):1314–1323. doi: 10.1681/ASN.V561314. [DOI] [PubMed] [Google Scholar]
  52. Weinberg J. M., Davis J. A., Trivedi B. Calcium compartmentation in isolated renal tubules in suspension. Biochem Med Metab Biol. 1988 Apr;39(2):234–245. doi: 10.1016/0885-4505(88)90081-3. [DOI] [PubMed] [Google Scholar]
  53. Weinberg J. M. The cell biology of ischemic renal injury. Kidney Int. 1991 Mar;39(3):476–500. doi: 10.1038/ki.1991.58. [DOI] [PubMed] [Google Scholar]
  54. Weinberg J. M., Venkatachalam M. A., Garzo-Quintero R., Roeser N. F., Davis J. A. Structural requirements for protection by small amino acids against hypoxic injury in kidney proximal tubules. FASEB J. 1990 Dec;4(15):3347–3354. doi: 10.1096/fasebj.4.15.2253849. [DOI] [PubMed] [Google Scholar]
  55. Weinberg J. M., Venkatachalam M. A., Goldberg H., Roeser N. F., Davis J. A. Modulation by Gly, Ca, and acidosis of injury-associated unesterified fatty acid accumulation in proximal tubule cells. Am J Physiol. 1995 Jan;268(1 Pt 2):F110–F121. doi: 10.1152/ajprenal.1995.268.1.F110. [DOI] [PubMed] [Google Scholar]
  56. Weinberg J. M., Venkatachalam M. A., Roeser N. F., Davis J. A., Varani J., Johnson K. J. Amino acid protection of cultured kidney tubule cells against calcium ionophore-induced lethal cell injury. Lab Invest. 1991 Dec;65(6):671–678. [PubMed] [Google Scholar]
  57. Williams D. A., Fay F. S. Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium. 1990 Feb-Mar;11(2-3):75–83. doi: 10.1016/0143-4160(90)90061-x. [DOI] [PubMed] [Google Scholar]
  58. Williamson J. R., Monck J. R. Hormone effects on cellular Ca2+ fluxes. Annu Rev Physiol. 1989;51:107–124. doi: 10.1146/annurev.ph.51.030189.000543. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES