Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):723–735. doi: 10.1172/JCI119585

Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite.

C Szabó 1, S Cuzzocrea 1, B Zingarelli 1, M O'Connor 1, A L Salzman 1
PMCID: PMC508242  PMID: 9239421

Abstract

DNA single strand breakage and activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS) contribute to peroxynitrite-induced cellular injury. We investigated the role of PARS activation in the pathogenesis of endothelial dysfunction. In human umbilical vein endothelial cells (HUVEC), DNA strand breakage (alkaline unwinding assay), PARS activation (incorporation or radiolabeled NAD+ into proteins), mitochondrial respiration [conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to formazan] and apoptotic index (cytoplasmatic release of histones) were measured. Endotoxin shock was induced in rats by bacterial lipopolysaccharide. Vascular reactivity of thoracic aortic rings were measured in organ chambers. In HUVEC, peroxynitrite caused a dose-dependent suppression of mitochondrial respiration, induced DNA strand breakage and caused an activation of PARS. Pharmacological inhibition of PARS reduced the acute and delayed suppression of mitochondrial respiration when cells were exposed to intermediate, but not high doses of peroxynitrite. Similarly, protection against the intermediate, but not high doses of peroxynitrite was seen in fibroblasts from the PARS-/- mice, when compared to wild-type controls. These data suggest that PARS plays a role in peroxynitrite-induced cytotoxicity, but at very high levels of oxidant exposure, PARS-independent cytotoxic mechanisms become predominant. Peroxynitrite-induced apoptosis was not affected by PARS inhibition. Vascular rings exposed to peroxynitrite and rings taken from rats subjected to endotoxic shock exhibited reduced endothelium-dependent relaxant responses in response to acetylcholine. The development of this endothelial dysfunction was ameliorated by the PARS inhibitor 3-aminobenzamide. Activation of PARS by peroxynitrite, therefore, may be involved in the development of endothelial dysfunction in endotoxemia.

Full Text

The Full Text of this article is available as a PDF (303.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli S. P., Mallett C. P., Bergstein J. M. Role of glutathione in protecting endothelial cells against hydrogen peroxide oxidant injury. J Lab Clin Med. 1986 Sep;108(3):190–198. [PubMed] [Google Scholar]
  2. Andreoli S. P. Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatr Res. 1989 Jan;25(1):97–101. doi: 10.1203/00006450-198901000-00021. [DOI] [PubMed] [Google Scholar]
  3. Banasik M., Komura H., Shimoyama M., Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem. 1992 Jan 25;267(3):1569–1575. [PubMed] [Google Scholar]
  4. Bingisser R., Stey C., Weller M., Groscurth P., Russi E., Frei K. Apoptosis in human alveolar macrophages is induced by endotoxin and is modulated by cytokines. Am J Respir Cell Mol Biol. 1996 Jul;15(1):64–70. doi: 10.1165/ajrcmb.15.1.8679223. [DOI] [PubMed] [Google Scholar]
  5. Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7162–7166. doi: 10.1073/pnas.92.16.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cochrane C. G. Mechanisms of oxidant injury of cells. Mol Aspects Med. 1991;12(2):137–147. doi: 10.1016/0098-2997(91)90009-b. [DOI] [PubMed] [Google Scholar]
  7. Crow J. P., Beckman J. S. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr Top Microbiol Immunol. 1995;196:57–73. doi: 10.1007/978-3-642-79130-7_7. [DOI] [PubMed] [Google Scholar]
  8. Darley-Usmar V., Halliwell B. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 1996 May;13(5):649–662. doi: 10.1023/a:1016079012214. [DOI] [PubMed] [Google Scholar]
  9. Darley-Usmar V., Wiseman H., Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett. 1995 Aug 7;369(2-3):131–135. doi: 10.1016/0014-5793(95)00764-z. [DOI] [PubMed] [Google Scholar]
  10. Dong C., Wilson J. E., Winters G. L., McManus B. M. Human transplant coronary artery disease: pathological evidence for Fas-mediated apoptotic cytotoxicity in allograft arteriopathy. Lab Invest. 1996 May;74(5):921–931. [PubMed] [Google Scholar]
  11. Estévez A. G., Radi R., Barbeito L., Shin J. T., Thompson J. A., Beckman J. S. Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J Neurochem. 1995 Oct;65(4):1543–1550. doi: 10.1046/j.1471-4159.1995.65041543.x. [DOI] [PubMed] [Google Scholar]
  12. Fatehi-Hassanabad Z., Burns H., Aughey E. A., Paul A., Plevin R., Parratt J. R., Furman B. L. Effects of L-canavanine, an inhibitor of inducible nitric oxide synthase, on endotoxin mediated shock in rats. Shock. 1996 Sep;6(3):194–200. [PubMed] [Google Scholar]
  13. Fullerton D. A., McIntyre R. C., Jr, Hahn A. R., Agrafojo J., Koike K., Meng X., Banerjee A., Harken A. H. Dysfunction of cGMP-mediated pulmonary vasorelaxation in endotoxin-induced acute lung injury. Am J Physiol. 1995 Jun;268(6 Pt 1):L1029–L1035. doi: 10.1152/ajplung.1995.268.6.L1029. [DOI] [PubMed] [Google Scholar]
  14. Heller B., Wang Z. Q., Wagner E. F., Radons J., Bürkle A., Fehsel K., Burkart V., Kolb H. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem. 1995 May 12;270(19):11176–11180. doi: 10.1074/jbc.270.19.11176. [DOI] [PubMed] [Google Scholar]
  15. Hoshi H., McKeehan W. L. Brain- and liver cell-derived factors are required for growth of human endothelial cells in serum-free culture. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6413–6417. doi: 10.1073/pnas.81.20.6413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Junod A. F., Jornot L., Petersen H. Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity, and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and fibroblasts. J Cell Physiol. 1989 Jul;140(1):177–185. doi: 10.1002/jcp.1041400121. [DOI] [PubMed] [Google Scholar]
  17. Kanwar S., Kubes P. Nitric oxide is an antiadhesive molecule for leukocytes. New Horiz. 1995 Feb;3(1):93–104. [PubMed] [Google Scholar]
  18. Katusic Z. S. Superoxide anion and endothelial regulation of arterial tone. Free Radic Biol Med. 1996;20(3):443–448. doi: 10.1016/0891-5849(96)02116-8. [DOI] [PubMed] [Google Scholar]
  19. Kirkland J. B. Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose)polymerase. Biochim Biophys Acta. 1991 May 17;1092(3):319–325. doi: 10.1016/s0167-4889(97)90007-0. [DOI] [PubMed] [Google Scholar]
  20. Laurence J., Mitra D., Steiner M., Staiano-Coico L., Jaffe E. Plasma from patients with idiopathic and human immunodeficiency virus-associated thrombotic thrombocytopenic purpura induces apoptosis in microvascular endothelial cells. Blood. 1996 Apr 15;87(8):3245–3254. [PubMed] [Google Scholar]
  21. Lefer A. M. Attenuation of myocardial ischemia-reperfusion injury with nitric oxide replacement therapy. Ann Thorac Surg. 1995 Sep;60(3):847–851. doi: 10.1016/0003-4975(95)00423-I. [DOI] [PubMed] [Google Scholar]
  22. Lin K. T., Xue J. Y., Nomen M., Spur B., Wong P. Y. Peroxynitrite-induced apoptosis in HL-60 cells. J Biol Chem. 1995 Jul 14;270(28):16487–16490. doi: 10.1074/jbc.270.28.16487. [DOI] [PubMed] [Google Scholar]
  23. Lizard G., Deckert V., Dubrez L., Moisant M., Gambert P., Lagrost L. Induction of apoptosis in endothelial cells treated with cholesterol oxides. Am J Pathol. 1996 May;148(5):1625–1638. [PMC free article] [PubMed] [Google Scholar]
  24. Masiello P., Cubeddu T. L., Frosina G., Bergamini E. Protective effect of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase, against streptozotocin-induced diabetes. Diabetologia. 1985 Sep;28(9):683–686. doi: 10.1007/BF00291976. [DOI] [PubMed] [Google Scholar]
  25. McCord J. M. Oxygen-derived free radicals. New Horiz. 1993 Feb;1(1):70–76. [PubMed] [Google Scholar]
  26. Messmer U. K., Brüne B. Nitric oxide (NO) in apoptotic versus necrotic RAW 264.7 macrophage cell death: the role of NO-donor exposure, NAD+ content, and p53 accumulation. Arch Biochem Biophys. 1996 Mar 1;327(1):1–10. doi: 10.1006/abbi.1996.0085. [DOI] [PubMed] [Google Scholar]
  27. Miles A. M., Bohle D. S., Glassbrenner P. A., Hansert B., Wink D. A., Grisham M. B. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem. 1996 Jan 5;271(1):40–47. doi: 10.1074/jbc.271.1.40. [DOI] [PubMed] [Google Scholar]
  28. Monti D., Troiano L., Tropea F., Grassilli E., Cossarizza A., Barozzi D., Pelloni M. C., Tamassia M. G., Bellomo G., Franceschi C. Apoptosis--programmed cell death: a role in the aging process? Am J Clin Nutr. 1992 Jun;55(6 Suppl):1208S–1214S. doi: 10.1093/ajcn/55.6.1208S. [DOI] [PubMed] [Google Scholar]
  29. Myers P. R., Zhong Q., Jones J. J., Tanner M. A., Adams H. R., Parker J. L. Release of EDRF and NO in ex vivo perfused aorta: inhibition by in vivo E. coli endotoxemia. Am J Physiol. 1995 Mar;268(3 Pt 2):H955–H961. doi: 10.1152/ajpheart.1995.268.3.H955. [DOI] [PubMed] [Google Scholar]
  30. Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  31. Okamoto H. Regulation of proinsulin synthesis in pancreatic islets and a new aspect to insulin-dependent diabetes. Mol Cell Biochem. 1981 Jun 9;37(1):43–61. doi: 10.1007/BF02355886. [DOI] [PubMed] [Google Scholar]
  32. Parker J. L., Adams H. R. Selective inhibition of endothelium-dependent vasodilator capacity by Escherichia coli endotoxemia. Circ Res. 1993 Mar;72(3):539–551. doi: 10.1161/01.res.72.3.539. [DOI] [PubMed] [Google Scholar]
  33. Payne C. M., Bernstein C., Bernstein H. Apoptosis overview emphasizing the role of oxidative stress, DNA damage and signal-transduction pathways. Leuk Lymphoma. 1995 Sep;19(1-2):43–93. doi: 10.3109/10428199509059662. [DOI] [PubMed] [Google Scholar]
  34. Radons J., Heller B., Bürkle A., Hartmann B., Rodriguez M. L., Kröncke K. D., Burkart V., Kolb H. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1270–1277. doi: 10.1006/bbrc.1994.1368. [DOI] [PubMed] [Google Scholar]
  35. Reden J. Molsidomine. Blood Vessels. 1990;27(2-5):282–294. doi: 10.1159/000158820. [DOI] [PubMed] [Google Scholar]
  36. Rice W. G., Hillyer C. D., Harten B., Schaeffer C. A., Dorminy M., Lackey D. A., 3rd, Kirsten E., Mendeleyev J., Buki K. G., Hakam A. Induction of endonuclease-mediated apoptosis in tumor cells by C-nitroso-substituted ligands of poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7703–7707. doi: 10.1073/pnas.89.16.7703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Richter C., Schweizer M., Cossarizza A., Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996 Jan 8;378(2):107–110. doi: 10.1016/0014-5793(95)01431-4. [DOI] [PubMed] [Google Scholar]
  38. Rubbo H., Radi R., Trujillo M., Telleri R., Kalyanaraman B., Barnes S., Kirk M., Freeman B. A. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem. 1994 Oct 21;269(42):26066–26075. [PubMed] [Google Scholar]
  39. Salgo M. G., Bermúdez E., Squadrito G. L., Pryor W. A. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected]. Arch Biochem Biophys. 1995 Oct 1;322(2):500–505. doi: 10.1006/abbi.1995.1493. [DOI] [PubMed] [Google Scholar]
  40. Schneider F., Bucher B., Schott C., Andre A., Julou-Schaeffer G., Stoclet J. C. Effect of bacterial lipopolysaccharide on function of rat small femoral arteries. Am J Physiol. 1994 Jan;266(1 Pt 2):H191–H198. doi: 10.1152/ajpheart.1994.266.1.H191. [DOI] [PubMed] [Google Scholar]
  41. Snyder S. H. No NO prevents parkinsonism. Nat Med. 1996 Sep;2(9):965–966. doi: 10.1038/nm0996-965. [DOI] [PubMed] [Google Scholar]
  42. Szabó C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 1995 Feb;3(1):2–32. [PubMed] [Google Scholar]
  43. Szabó C., Bryk R., Zingarelli B., Southan G. J., Gahman T. C., Bhat V., Salzman A. L., Wolff D. J. Pharmacological characterization of guanidinoethyldisulphide (GED), a novel inhibitor of nitric oxide synthase with selectivity towards the inducible isoform. Br J Pharmacol. 1996 Aug;118(7):1659–1668. doi: 10.1111/j.1476-5381.1996.tb15589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Szabó C. DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med. 1996;21(6):855–869. doi: 10.1016/0891-5849(96)00170-0. [DOI] [PubMed] [Google Scholar]
  45. Szabó C., Day B. J., Salzman A. L. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 1996 Feb 26;381(1-2):82–86. doi: 10.1016/0014-5793(96)00087-7. [DOI] [PubMed] [Google Scholar]
  46. Szabó C. Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull. 1996;41(3):131–141. doi: 10.1016/0361-9230(96)00159-1. [DOI] [PubMed] [Google Scholar]
  47. Szabó C., Salzman A. L., Ischiropoulos H. Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett. 1995 Apr 24;363(3):235–238. doi: 10.1016/0014-5793(95)00322-z. [DOI] [PubMed] [Google Scholar]
  48. Szabó C., Salzman A. L., Ischiropoulos H. Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett. 1995 Sep 25;372(2-3):229–232. doi: 10.1016/0014-5793(95)00984-h. [DOI] [PubMed] [Google Scholar]
  49. Szabó C., Saunders C., O'Connor M., Salzman A. L. Peroxynitrite causes energy depletion and increases permeability via activation of poly (ADP-ribose) synthetase in pulmonary epithelial cells. Am J Respir Cell Mol Biol. 1997 Feb;16(2):105–109. doi: 10.1165/ajrcmb.16.2.9032115. [DOI] [PubMed] [Google Scholar]
  50. Szabó C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock. 1996 Aug;6(2):79–88. doi: 10.1097/00024382-199608000-00001. [DOI] [PubMed] [Google Scholar]
  51. Szabó C., Thiemermann C. Invited opinion: role of nitric oxide in hemorrhagic, traumatic, and anaphylactic shock and thermal injury. Shock. 1994 Aug;2(2):145–155. [PubMed] [Google Scholar]
  52. Szabó C., Thiemermann C., Wu C. C., Perretti M., Vane J. R. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):271–275. doi: 10.1073/pnas.91.1.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Szabó C., Zingarelli B., O'Connor M., Salzman A. L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1753–1758. doi: 10.1073/pnas.93.5.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Szabó C., Zingarelli B., Salzman A. L. Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. Circ Res. 1996 Jun;78(6):1051–1063. doi: 10.1161/01.res.78.6.1051. [DOI] [PubMed] [Google Scholar]
  55. Thies R. L., Autor A. P. Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance. Arch Biochem Biophys. 1991 May 1;286(2):353–363. doi: 10.1016/0003-9861(91)90051-j. [DOI] [PubMed] [Google Scholar]
  56. Umans J. G., Wylam M. E., Samsel R. W., Edwards J., Schumacker P. T. Effects of endotoxin in vivo on endothelial and smooth-muscle function in rabbit and rat aorta. Am Rev Respir Dis. 1993 Dec;148(6 Pt 1):1638–1645. doi: 10.1164/ajrccm/148.6_Pt_1.1638. [DOI] [PubMed] [Google Scholar]
  57. Vane J. R., Botting R. M. Mediators from the endothelial cell and their participation in inflammation. Int J Tissue React. 1994;16(1):19–49. [PubMed] [Google Scholar]
  58. Varani J., Ward P. A. Mechanisms of endothelial cell injury in acute inflammation. Shock. 1994 Nov;2(5):311–319. doi: 10.1097/00024382-199411000-00001. [DOI] [PubMed] [Google Scholar]
  59. Villa L. M., Salas E., Darley-Usmar V. M., Radomski M. W., Moncada S. Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12383–12387. doi: 10.1073/pnas.91.26.12383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wang Z. Q., Auer B., Stingl L., Berghammer H., Haidacher D., Schweiger M., Wagner E. F. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 1995 Mar 1;9(5):509–520. doi: 10.1101/gad.9.5.509. [DOI] [PubMed] [Google Scholar]
  61. Watson A. J., Askew J. N., Benson R. S. Poly(adenosine diphosphate ribose) polymerase inhibition prevents necrosis induced by H2O2 but not apoptosis. Gastroenterology. 1995 Aug;109(2):472–482. doi: 10.1016/0016-5085(95)90335-6. [DOI] [PubMed] [Google Scholar]
  62. White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., Bradley W. A., Gianturco S. H., Gore J., Freeman B. A. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1044–1048. doi: 10.1073/pnas.91.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wizemann T. M., Gardner C. R., Laskin J. D., Quinones S., Durham S. K., Goller N. L., Ohnishi S. T., Laskin D. L. Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J Leukoc Biol. 1994 Dec;56(6):759–768. doi: 10.1002/jlb.56.6.759. [DOI] [PubMed] [Google Scholar]
  64. Xia Y., Dawson V. L., Dawson T. M., Snyder S. H., Zweier J. L. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6770–6774. doi: 10.1073/pnas.93.13.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Youn Y. K., LaLonde C., Demling R. Use of antioxidant therapy in shock and trauma. Circ Shock. 1991 Dec;35(4):245–249. [PubMed] [Google Scholar]
  66. Young D. S., Kadokura M., Brockhausen I., Kashef V., Coles J. G. Human serum-induced porcine endothelial cell apoptosis--another pathway to xenograft rejection. Transplant Proc. 1996 Apr;28(2):611–612. [PubMed] [Google Scholar]
  67. Zhang J., Dawson V. L., Dawson T. M., Snyder S. H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 1994 Feb 4;263(5147):687–689. doi: 10.1126/science.8080500. [DOI] [PubMed] [Google Scholar]
  68. Zingarelli B., O'Connor M., Wong H., Salzman A. L., Szabó C. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol. 1996 Jan 1;156(1):350–358. [PubMed] [Google Scholar]
  69. Zingarelli B., Southan G. J., Gilad E., O'Connor M., Salzman A. L., Szabó C. The inhibitory effects of mercaptoalkylguanidines on cyclo-oxygenase activity. Br J Pharmacol. 1997 Feb;120(3):357–366. doi: 10.1038/sj.bjp.0700892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. de Murcia G., Ménissier-de Murcia J., Schreiber V. Poly(ADP-ribose) polymerase: molecular biological aspects. Bioessays. 1991 Sep;13(9):455–462. doi: 10.1002/bies.950130905. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES