Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 1;100(3):736–744. doi: 10.1172/JCI119586

E2 transacylase-deficient (type II) maple syrup urine disease. Aberrant splicing of E2 mRNA caused by internal intronic deletions and association with thiamine-responsive phenotype.

J L Chuang 1, R P Cox 1, D T Chuang 1
PMCID: PMC508243  PMID: 9239422

Abstract

Maple syrup urine disease (MSUD) or branched-chain alpha-ketoaciduria is an autosomally inherited disorder in the catabolism of branched-chain amino acids leucine, isoleucine, and valine. The disease is characterized by severe ketoacidosis, mental retardation, and neurological impairments. MSUD can be classified into genetic subtypes according to the genes of the branched-chain alpha-ketoacid dehydrogenase (BCKD) complex which are affected in patients. We describe here four intronic deletions and an intronic nucleotide substitution in the E2 transacylase gene of type II MSUD, in which the E2 subunit of the BCKD complex is deficient. These new E2 mutations comprise an internal 3.2-kb deletion in intron 4 (causing a 17-bp insertion in mRNA), an internal 12-bp (ttaccttgttac) deletion in intron 4 (creating a 10-bp insertion), a 10-bp (catttctaG) deletion in intron 10/ exon 11 junction (leading to a 21-bp deletion), a 2-bp deletion in the exon 5/intron 5 junction (ATgt--> A-t) (resulting in the skipping of exon 5), and a G to A transition at nucleotide -7 of intron 9 (causing a 6-bp insertion). These intronic mutations were initially detected by secondary alterations in the mutant E2 mRNA, as a result of aberrant splicing. The 3.2-kb deletion in intron 4 was determined by the amplification of the entire intron from both a normal subject (11.2 kb) and a homozygous patient (8 kb) by long PCR, followed by subcloning and sequencing of regions flanking the deletion. Similar methods were used to identify and characterize the other intronic alterations. Our results depict heretofore undescribed splicing errors caused by the deletion of internal intronic segments, and provide an approach for detecting this class of novel and rare human mutation. The association of the thiamine-responsive phenotype with a subset of the type II MSUD patients studied is also discussed.

Full Text

The Full Text of this article is available as a PDF (304.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berget S. M. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
  2. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  3. Chuang D. T., Cox R. P. Enzyme assays with mutant cell lines of maple syrup urine disease. Methods Enzymol. 1988;166:135–146. doi: 10.1016/s0076-6879(88)66020-4. [DOI] [PubMed] [Google Scholar]
  4. Chuang J. L., Davie J. R., Chinsky J. M., Wynn R. M., Cox R. P., Chuang D. T. Molecular and biochemical basis of intermediate maple syrup urine disease. Occurrence of homozygous G245R and F364C mutations at the E1 alpha locus of Hispanic-Mexican patients. J Clin Invest. 1995 Mar;95(3):954–963. doi: 10.1172/JCI117804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chuang J. L., Fisher C. R., Cox R. P., Chuang D. T. Molecular basis of maple syrup urine disease: novel mutations at the E1 alpha locus that impair E1(alpha 2 beta 2) assembly or decrease steady-state E1 alpha mRNA levels of branched-chain alpha-keto acid dehydrogenase complex. Am J Hum Genet. 1994 Aug;55(2):297–304. [PMC free article] [PubMed] [Google Scholar]
  6. Danner D. J., Lemmon S. K., Elsas L. J., 2nd Stabilization of mammalian liver branched-chain alpha-ketoacid dehydrogenase by thiamin pyrophosphate. Arch Biochem Biophys. 1980 Jun;202(1):23–28. doi: 10.1016/0003-9861(80)90401-4. [DOI] [PubMed] [Google Scholar]
  7. Ellerine N. P., Herring W. J., Elsas L. J., 2nd, McKean M. C., Klein P. D., Danner D. J. Thiamin-responsive maple syrup urine disease in a patient antigenically missing dihydrolipoamide acyltransferase. Biochem Med Metab Biol. 1993 Jun;49(3):363–374. doi: 10.1006/bmmb.1993.1037. [DOI] [PubMed] [Google Scholar]
  8. Fisher C. W., Chuang J. L., Griffin T. A., Lau K. S., Cox R. P., Chuang D. T. Molecular phenotypes in cultured maple syrup urine disease cells. Complete E1 alpha cDNA sequence and mRNA and subunit contents of the human branched chain alpha-keto acid dehydrogenase complex. J Biol Chem. 1989 Feb 25;264(6):3448–3453. [PubMed] [Google Scholar]
  9. Fisher C. W., Fisher C. R., Chuang J. L., Lau K. S., Chuang D. T., Cox R. P. Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at the E2 (DBT) locus of six patients with maple syrup urine disease: multiple-exon skipping as a secondary effect of the mutations. Am J Hum Genet. 1993 Feb;52(2):414–424. [PMC free article] [PubMed] [Google Scholar]
  10. Fisher C. W., Lau K. S., Fisher C. R., Wynn R. M., Cox R. P., Chuang D. T. A 17-bp insertion and a Phe215----Cys missense mutation in the dihydrolipoyl transacylase (E2) mRNA from a thiamine-responsive maple syrup urine disease patient WG-34. Biochem Biophys Res Commun. 1991 Jan 31;174(2):804–809. doi: 10.1016/0006-291x(91)91489-y. [DOI] [PubMed] [Google Scholar]
  11. Harris R. A., Paxton R., Powell S. M., Goodwin G. W., Kuntz M. J., Han A. C. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification. Adv Enzyme Regul. 1986;25:219–237. doi: 10.1016/0065-2571(86)90016-6. [DOI] [PubMed] [Google Scholar]
  12. Herring W. J., McKean M., Dracopoli N., Danner D. J. Branched chain acyltransferase absence due to an Alu-based genomic deletion allele and an exon skipping allele in a compound heterozygote proband expressing maple syrup urine disease. Biochim Biophys Acta. 1992 Mar 20;1138(3):236–242. doi: 10.1016/0925-4439(92)90043-m. [DOI] [PubMed] [Google Scholar]
  13. Krawczak M., Cooper D. N. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet. 1991 Mar;86(5):425–441. doi: 10.1007/BF00194629. [DOI] [PubMed] [Google Scholar]
  14. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  15. Lau K. S., Chuang J. L., Herring W. J., Danner D. J., Cox R. P., Chuang D. T. The complete cDNA sequence for dihydrolipoyl transacylase (E2) of human branched-chain alpha-keto acid dehydrogenase complex. Biochim Biophys Acta. 1992 Oct 20;1132(3):319–321. doi: 10.1016/0167-4781(92)90169-z. [DOI] [PubMed] [Google Scholar]
  16. Lau K. S., Herring W. J., Chuang J. L., McKean M., Danner D. J., Cox R. P., Chuang D. T. Structure of the gene encoding dihydrolipoyl transacylase (E2) component of human branched chain alpha-keto acid dehydrogenase complex and characterization of an E2 pseudogene. J Biol Chem. 1992 Nov 25;267(33):24090–24096. [PubMed] [Google Scholar]
  17. Maquat L. E. Defects in RNA splicing and the consequence of shortened translational reading frames. Am J Hum Genet. 1996 Aug;59(2):279–286. [PMC free article] [PubMed] [Google Scholar]
  18. Miller G., Lipman M. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci U S A. 1973 Jan;70(1):190–194. doi: 10.1073/pnas.70.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitsubuchi H., Nobukuni Y., Akaboshi I., Indo Y., Endo F., Matsuda I. Maple syrup urine disease caused by a partial deletion in the inner E2 core domain of the branched chain alpha-keto acid dehydrogenase complex due to aberrant splicing. A single base deletion at a 5'-splice donor site of an intron of the E2 gene disrupts the consensus sequence in this region. J Clin Invest. 1991 Apr;87(4):1207–1211. doi: 10.1172/JCI115120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakai K., Sakamoto H. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene. 1994 Apr 20;141(2):171–177. doi: 10.1016/0378-1119(94)90567-3. [DOI] [PubMed] [Google Scholar]
  21. Nichols R. C., Rudolphi O., Ek B., Exelbert R., Plotz P. H., Raben N. Glycogenosis type VII (Tarui disease) in a Swedish family: two novel mutations in muscle phosphofructokinase gene (PFK-M) resulting in intron retentions. Am J Hum Genet. 1996 Jul;59(1):59–65. [PMC free article] [PubMed] [Google Scholar]
  22. Pettit F. H., Yeaman S. J., Reed L. J. Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4881–4885. doi: 10.1073/pnas.75.10.4881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pueschel S. M., Bresnan M. J., Shih V. E., Levy H. L. Thiamine-responsive intermittent branched-chain ketoaciduria. J Pediatr. 1979 Apr;94(4):628–631. doi: 10.1016/s0022-3476(79)80036-0. [DOI] [PubMed] [Google Scholar]
  24. Scriver C. R., Mackenzie S., Clow C. L., Delvin E. Thiamine-responsive maple-syrup-urine disease. Lancet. 1971 Feb 13;1(7694):310–312. doi: 10.1016/s0140-6736(71)91041-5. [DOI] [PubMed] [Google Scholar]
  25. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Taylor J., Robinson B. H., Sherwood W. G. A defect in branched-chain amino acid metabolism in a patient with congenital lactic acidosis due to dihydrolipoyl dehydrogenase deficiency. Pediatr Res. 1978 Jan;12(1):60–62. doi: 10.1203/00006450-197801000-00018. [DOI] [PubMed] [Google Scholar]
  27. Yeaman S. J. The 2-oxo acid dehydrogenase complexes: recent advances. Biochem J. 1989 Feb 1;257(3):625–632. doi: 10.1042/bj2570625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zneimer S. M., Lau K. S., Eddy R. L., Shows T. B., Chuang J. L., Chuang D. T., Cox R. P. Regional assignment of two genes of the human branched-chain alpha-keto acid dehydrogenase complex: the E1 beta gene (BCKDHB) to chromosome 6p21-22 and the E2 gene (DBT) to chromosome 1p31. Genomics. 1991 Jul;10(3):740–747. doi: 10.1016/0888-7543(91)90458-q. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES