Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jan 15;88(2):434–438. doi: 10.1073/pnas.88.2.434

Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses.

E M Rubin 1, B Y Ishida 1, S M Clift 1, R M Krauss 1
PMCID: PMC50825  PMID: 1703299

Abstract

In Western societies high density lipoprotein (HDL) levels correlate inversely with the risk for coronary heart disease. The primary protein component of both human and mouse HDL is apolipoprotein A-I (apoAI), which comprises greater than 70% of HDL protein and 30% of HDL mass. Human HDLs include particles of several distinct size subpopulations, whereas HDLs from inbred C57BL/6 mice contain a single population of particles. To study the regulation of apoAI expression and its role in HDL assembly, we created transgenic C57BL/6 mice containing the human apoAI gene. Two independent lines of transgenic mice with approximately twice the normal plasma levels of total apoAI were studied. The level of mouse apoAI is reduced greater than 4-fold in both transgenic lines, comprising only 4% of total plasma apoAI levels in one transgenic line and 13% in the other. We demonstrate that the mechanism responsible for the decrease in mouse apoAI is posttranscriptional. Parallel to the replacement of mouse with human apoAI, the single HDL species normally present in the plasma of C57BL/6 is replaced by two HDL subclasses similar in size to human HDL2b and HDL3a. The changes in murine apolipoprotein levels and HDL subclass size are inherited by all transgenic offspring of the two founder animals. These results suggest a dominant role of apoAI in determining the HDL particle size distribution and a mechanism involving expression of human apoAI transgenes that alters the plasma levels of mouse apoAI.

Full text

PDF
434

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanche P. J., Gong E. L., Forte T. M., Nichols A. V. Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta. 1981 Sep 24;665(3):408–419. doi: 10.1016/0005-2760(81)90253-8. [DOI] [PubMed] [Google Scholar]
  2. Brinton E. A., Eisenberg S., Breslow J. L. Elevated high density lipoprotein cholesterol levels correlate with decreased apolipoprotein A-I and A-II fractional catabolic rate in women. J Clin Invest. 1989 Jul;84(1):262–269. doi: 10.1172/JCI114149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheung M. C., Wolf A. C., Lum K. D., Tollefson J. H., Albers J. J. Distribution and localization of lecithin:cholesterol acyltransferase and cholesteryl ester transfer activity in A-I-containing lipoproteins. J Lipid Res. 1986 Nov;27(11):1135–1144. [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Frohlich J. J., Pritchard P. H. The clinical significance of serum high density lipoproteins. Clin Biochem. 1989 Dec;22(6):417–423. doi: 10.1016/s0009-9120(89)80091-8. [DOI] [PubMed] [Google Scholar]
  7. GOFMAN J. W., JONES H. B., LINDGREN F. T., LYON T. P., ELLIOTT H. A., STRISOWER B. Blood lipids and human atherosclerosis. Circulation. 1950 Aug;2(2):161–178. doi: 10.1161/01.cir.2.2.161. [DOI] [PubMed] [Google Scholar]
  8. Glaichenhaus N., Léopold P., Cuzin F. Increased levels of mitochondrial gene expression in rat fibroblast cells immortalized or transformed by viral and cellular oncogenes. EMBO J. 1986 Jun;5(6):1261–1265. doi: 10.1002/j.1460-2075.1986.tb04355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glueck C. J., Gartside P., Fallat R. W., Sielski J., Steiner P. M. Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med. 1976 Dec;88(6):941–957. [PubMed] [Google Scholar]
  10. Gordon J. W., Scangos G. A., Plotkin D. J., Barbosa J. A., Ruddle F. H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7380–7384. doi: 10.1073/pnas.77.12.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishida B. Y., Albee D., Paigen B. Interconversion of prebeta-migrating lipoproteins containing apolipoprotein A-I and HDL. J Lipid Res. 1990 Feb;31(2):227–236. [PubMed] [Google Scholar]
  12. Javitt N. B. Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J. 1990 Feb 1;4(2):161–168. doi: 10.1096/fasebj.4.2.2153592. [DOI] [PubMed] [Google Scholar]
  13. Jiao S., Cole T. G., Kitchens R. T., Pfleger B., Schonfeld G. Genetic heterogeneity of lipoproteins in inbred strains of mice: analysis by gel-permeation chromatography. Metabolism. 1990 Feb;39(2):155–160. doi: 10.1016/0026-0495(90)90069-o. [DOI] [PubMed] [Google Scholar]
  14. Kunitake S. T., Kane J. P. Factors affecting the integrity of high density lipoproteins in the ultracentrifuge. J Lipid Res. 1982 Aug;23(6):936–940. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Miller J. C., Barth R. K., Shaw P. H., Elliott R. W., Hastie N. D. Identification of a cDNA clone for mouse apoprotein A-1 (apo A-1) and its use in characterization of apo A-1 mRNA expression in liver and small intestine. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1511–1515. doi: 10.1073/pnas.80.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller N. E. Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am Heart J. 1987 Feb;113(2 Pt 2):589–597. doi: 10.1016/0002-8703(87)90638-7. [DOI] [PubMed] [Google Scholar]
  18. Nichols A. V., Blanche P. J., Gong E. L., Shore V. G., Forte T. M. Molecular pathways in the transformation of model discoidal lipoprotein complexes induced by lecithin:cholesterol acyltransferase. Biochim Biophys Acta. 1985 May 17;834(3):285–300. doi: 10.1016/0005-2760(85)90001-3. [DOI] [PubMed] [Google Scholar]
  19. Nichols A. V., Blanche P. J., Shore V. G., Gong E. L. Conversion of apolipoprotein-specific high-density lipoprotein populations during incubation of human plasma. Biochim Biophys Acta. 1989 Feb 20;1001(3):325–337. doi: 10.1016/0005-2760(89)90117-3. [DOI] [PubMed] [Google Scholar]
  20. Nichols A. V., Krauss R. M., Musliner T. A. Nondenaturing polyacrylamide gradient gel electrophoresis. Methods Enzymol. 1986;128:417–431. doi: 10.1016/0076-6879(86)28084-2. [DOI] [PubMed] [Google Scholar]
  21. Peterson G. L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem. 1979 Dec;100(2):201–220. doi: 10.1016/0003-2697(79)90222-7. [DOI] [PubMed] [Google Scholar]
  22. Schaefer E. J., Heaton W. H., Wetzel M. G., Brewer H. B., Jr Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis. 1982 Jan-Feb;2(1):16–26. doi: 10.1161/01.atv.2.1.16. [DOI] [PubMed] [Google Scholar]
  23. Schaefer E. J., Zech L. A., Jenkins L. L., Bronzert T. J., Rubalcaba E. A., Lindgren F. T., Aamodt R. L., Brewer H. B., Jr Human apolipoprotein A-I and A-II metabolism. J Lipid Res. 1982 Aug;23(6):850–862. [PubMed] [Google Scholar]
  24. Shepherd J., Packard C. J., Patsch J. R., Gotto A. M., Jr, Taunton O. D. Effects of dietary polyunsaturated and saturated fat on the properties of high density lipoproteins and the metabolism of apolipoprotein A-I. J Clin Invest. 1978 Jun;61(6):1582–1592. doi: 10.1172/JCI109078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sorci-Thomas M., Prack M. M., Dashti N., Johnson F., Rudel L. L., Williams D. L. Apolipoprotein (apo) A-I production and mRNA abundance explain plasma apoA-I and high density lipoprotein differences between two nonhuman primate species with high and low susceptibilities to diet-induced hypercholesterolemia. J Biol Chem. 1988 Apr 15;263(11):5183–5189. [PubMed] [Google Scholar]
  26. Walsh A., Ito Y., Breslow J. L. High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem. 1989 Apr 15;264(11):6488–6494. [PubMed] [Google Scholar]
  27. Wile D. B., Barbir M., Gallagher J., Myant N. B., Ritchie C. D., Thompson G. R., Humphries S. E. Apolipoprotein A-I gene polymorphisms: frequency in patients with coronary artery disease and healthy controls and association with serum apo A-I and HDL-cholesterol concentration. Atherosclerosis. 1989 Jul;78(1):9–18. doi: 10.1016/0021-9150(89)90153-6. [DOI] [PubMed] [Google Scholar]
  28. Zannis V. I., Cole F. S., Jackson C. L., Kurnit D. M., Karathanasis S. K. Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages. Biochemistry. 1985 Jul 30;24(16):4450–4455. doi: 10.1021/bi00337a028. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES