Abstract
Sporadic persistent hyperinsulinemic hypoglycemia of infancy (PHHI) or nesidioblastosis is a heterogeneous disorder characterized by profound hypoglycemia due to inappropriate hypersecretion of insulin. An important diagnostic goal is to distinguish patients with a focal hyperplasia of islet cells of the pancreas (FoPHHI) from those with a diffuse abnormality of islets (DiPHHI) because management strategies differ significantly. 16 infants with sporadic PHHI resistant to diazoxide and who underwent pancreatectomy were investigated. Selective pancreatic venous sampling coupled with peroperative surgical examination and analysis of extemporaneous frozen sections allowed us to identify 10 cases with FoPHHI and 6 cases with DiPHHI. We show here that in cases of FoPHHI, but not those of DiPHHI, there was specific loss of maternal alleles of the imprinted chromosome region 11p15 in cells of the hyperplastic area of the pancreas but not in normal pancreatic cells. This somatic event is consistent with a proliferative monoclonal lesion. It involves disruption of the balance between monoallelic expression of several maternally and paternally expressed genes. Thus, we provide the first molecular explanation of the heterogeneity of sporadic forms of PHHI such that it is possible to perform only partial pancreatectomy, limited to the focal somatic lesion, so as to avoid iatrogenic diabetes in patients with focal adenomatous hyperplasia.
Full Text
The Full Text of this article is available as a PDF (315.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
- Aynsley-Green A. Nesidioblastosis of the pancreas in infancy. Dev Med Child Neurol. 1981 Jun;23(3):372–379. [PubMed] [Google Scholar]
- Bartolomei M. S., Webber A. L., Brunkow M. E., Tilghman S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 1993 Sep;7(9):1663–1673. doi: 10.1101/gad.7.9.1663. [DOI] [PubMed] [Google Scholar]
- Brown K. W., Villar A. J., Bickmore W., Clayton-Smith J., Catchpoole D., Maher E. R., Reik W. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet. 1996 Dec;5(12):2027–2032. doi: 10.1093/hmg/5.12.2027. [DOI] [PubMed] [Google Scholar]
- Béroud C., Fournet J. C., Jeanpierre C., Droz D., Bouvier R., Froger D., Chrétien Y., Maréchal J. M., Weissenbach J., Junien C. Correlations of allelic imbalance of chromosome 14 with adverse prognostic parameters in 148 renal cell carcinomas. Genes Chromosomes Cancer. 1996 Dec;17(4):215–224. doi: 10.1002/(SICI)1098-2264(199612)17:4<215::AID-GCC3>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Christofori G., Naik P., Hanahan D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature. 1994 Jun 2;369(6479):414–418. doi: 10.1038/369414a0. [DOI] [PubMed] [Google Scholar]
- Christofori G., Naik P., Hanahan D. Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during beta-cell tumorigenesis. Nat Genet. 1995 Jun;10(2):196–201. doi: 10.1038/ng0695-196. [DOI] [PubMed] [Google Scholar]
- Dubois J., Brunelle F., Touati G., Sebag G., Nuttin C., Thach T., Nikoul-Fekete C., Rahier J., Saudubray J. M. Hyperinsulinism in children: diagnostic value of pancreatic venous sampling correlated with clinical, pathological and surgical outcome in 25 cases. Pediatr Radiol. 1995;25(7):512–516. doi: 10.1007/BF02015782. [DOI] [PubMed] [Google Scholar]
- Giannoukakis N., Deal C., Paquette J., Goodyer C. G., Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993 May;4(1):98–101. doi: 10.1038/ng0593-98. [DOI] [PubMed] [Google Scholar]
- Glaser B., Hirsch H. J., Landau H. Persistent hyperinsulinemic hypoglycemia of infancy: long-term octreotide treatment without pancreatectomy. J Pediatr. 1993 Oct;123(4):644–650. doi: 10.1016/s0022-3476(05)80970-9. [DOI] [PubMed] [Google Scholar]
- Glaser B., Phillip M., Carmi R., Lieberman E., Landau H. Persistent hyperinsulinemic hypoglycemia of infancy ("nesidioblastosis"): autosomal recessive inheritance in 7 pedigrees. Am J Med Genet. 1990 Dec;37(4):511–515. doi: 10.1002/ajmg.1320370416. [DOI] [PubMed] [Google Scholar]
- Goossens A., Gepts W., Saudubray J. M., Bonnefont J. P., Nihoul-Fekete, Heitz P. U., Klöppel G. Diffuse and focal nesidioblastosis. A clinicopathological study of 24 patients with persistent neonatal hyperinsulinemic hypoglycemia. Am J Surg Pathol. 1989 Sep;13(9):766–775. [PubMed] [Google Scholar]
- Guillemot F., Caspary T., Tilghman S. M., Copeland N. G., Gilbert D. J., Jenkins N. A., Anderson D. J., Joyner A. L., Rossant J., Nagy A. Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet. 1995 Mar;9(3):235–242. doi: 10.1038/ng0395-235. [DOI] [PubMed] [Google Scholar]
- Guillemot F., Caspary T., Tilghman S. M., Copeland N. G., Gilbert D. J., Jenkins N. A., Anderson D. J., Joyner A. L., Rossant J., Nagy A. Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet. 1995 Mar;9(3):235–242. doi: 10.1038/ng0395-235. [DOI] [PubMed] [Google Scholar]
- Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
- Haig D. Is human insulin imprinted? Nat Genet. 1994 May;7(1):10–10. doi: 10.1038/ng0594-10a. [DOI] [PubMed] [Google Scholar]
- Hao Y., Crenshaw T., Moulton T., Newcomb E., Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993 Oct 21;365(6448):764–767. doi: 10.1038/365764a0. [DOI] [PubMed] [Google Scholar]
- Harrington E. A., Bennett M. R., Fanidi A., Evan G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 1994 Jul 15;13(14):3286–3295. doi: 10.1002/j.1460-2075.1994.tb06630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatada I., Ohashi H., Fukushima Y., Kaneko Y., Inoue M., Komoto Y., Okada A., Ohishi S., Nabetani A., Morisaki H. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996 Oct;14(2):171–173. doi: 10.1038/ng1096-171. [DOI] [PubMed] [Google Scholar]
- Henry I., Bonaiti-Pellié C., Chehensse V., Beldjord C., Schwartz C., Utermann G., Junien C. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature. 1991 Jun 20;351(6328):665–667. doi: 10.1038/351665a0. [DOI] [PubMed] [Google Scholar]
- Henry I., Puech A., Riesewijk A., Ahnine L., Mannens M., Beldjord C., Bitoun P., Tournade M. F., Landrieu P., Junien C. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-fertilization event. Eur J Hum Genet. 1993;1(1):19–29. doi: 10.1159/000472384. [DOI] [PubMed] [Google Scholar]
- Inagaki N., Gonoi T., Clement J. P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270(5239):1166–1170. doi: 10.1126/science.270.5239.1166. [DOI] [PubMed] [Google Scholar]
- Jaffe R., Hashida Y., Yunis E. J. Pancreatic pathology in hyperinsulinemic hypoglycemia of infancy. Lab Invest. 1980 Mar;42(3):356–365. [PubMed] [Google Scholar]
- John R. M., Surani M. A. Imprinted genes and regulation of gene expression by epigenetic inheritance. Curr Opin Cell Biol. 1996 Jun;8(3):348–353. doi: 10.1016/s0955-0674(96)80008-1. [DOI] [PubMed] [Google Scholar]
- Junien C. Beckwith-Wiedemann syndrome, tumourigenesis and imprinting. Curr Opin Genet Dev. 1992 Jun;2(3):431–438. doi: 10.1016/s0959-437x(05)80154-6. [DOI] [PubMed] [Google Scholar]
- Kane C., Shepherd R. M., Squires P. E., Johnson P. R., James R. F., Milla P. J., Aynsley-Green A., Lindley K. J., Dunne M. J. Loss of functional KATP channels in pancreatic beta-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat Med. 1996 Dec;2(12):1344–1347. doi: 10.1038/nm1296-1344. [DOI] [PubMed] [Google Scholar]
- Kim H., Kerr A., Morehouse H. The association between tuberous sclerosis and insulinoma. AJNR Am J Neuroradiol. 1995 Aug;16(7):1543–1544. [PMC free article] [PubMed] [Google Scholar]
- Koi M., Johnson L. A., Kalikin L. M., Little P. F., Nakamura Y., Feinberg A. P. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science. 1993 Apr 16;260(5106):361–364. doi: 10.1126/science.8469989. [DOI] [PubMed] [Google Scholar]
- Lee M. P., Hu R. J., Johnson L. A., Feinberg A. P. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet. 1997 Feb;15(2):181–185. doi: 10.1038/ng0297-181. [DOI] [PubMed] [Google Scholar]
- Matsuoka S., Edwards M. C., Bai C., Parker S., Zhang P., Baldini A., Harper J. W., Elledge S. J. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995 Mar 15;9(6):650–662. doi: 10.1101/gad.9.6.650. [DOI] [PubMed] [Google Scholar]
- Matsuoka S., Thompson J. S., Edwards M. C., Bartletta J. M., Grundy P., Kalikin L. M., Harper J. W., Elledge S. J., Feinberg A. P. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3026–3030. doi: 10.1073/pnas.93.7.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morison I. M., Becroft D. M., Taniguchi T., Woods C. G., Reeve A. E. Somatic overgrowth associated with overexpression of insulin-like growth factor II. Nat Med. 1996 Mar;2(3):311–316. doi: 10.1038/nm0396-311. [DOI] [PubMed] [Google Scholar]
- Moulton T., Crenshaw T., Hao Y., Moosikasuwan J., Lin N., Dembitzer F., Hensle T., Weiss L., McMorrow L., Loew T. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat Genet. 1994 Jul;7(3):440–447. doi: 10.1038/ng0794-440. [DOI] [PubMed] [Google Scholar]
- Nestorowicz A., Wilson B. A., Schoor K. P., Inoue H., Glaser B., Landau H., Stanley C. A., Thornton P. S., Clement J. P., 4th, Bryan J. Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet. 1996 Nov;5(11):1813–1822. doi: 10.1093/hmg/5.11.1813. [DOI] [PubMed] [Google Scholar]
- Neumann H. P., Dinkel E., Brambs H., Wimmer B., Friedburg H., Volk B., Sigmund G., Riegler P., Haag K., Schollmeyer P. Pancreatic lesions in the von Hippel-Lindau syndrome. Gastroenterology. 1991 Aug;101(2):465–471. doi: 10.1016/0016-5085(91)90026-h. [DOI] [PubMed] [Google Scholar]
- Nichols C. G., Shyng S. L., Nestorowicz A., Glaser B., Clement J. P., 4th, Gonzalez G., Aguilar-Bryan L., Permutt M. A., Bryan J. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science. 1996 Jun 21;272(5269):1785–1787. doi: 10.1126/science.272.5269.1785. [DOI] [PubMed] [Google Scholar]
- Ogawa O., Becroft D. M., Morison I. M., Eccles M. R., Skeen J. E., Mauger D. C., Reeve A. E. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nat Genet. 1993 Dec;5(4):408–412. doi: 10.1038/ng1293-408. [DOI] [PubMed] [Google Scholar]
- Ogawa O., Eccles M. R., Szeto J., McNoe L. A., Yun K., Maw M. A., Smith P. J., Reeve A. E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature. 1993 Apr 22;362(6422):749–751. doi: 10.1038/362749a0. [DOI] [PubMed] [Google Scholar]
- Ohlsson R., Nyström A., Pfeifer-Ohlsson S., Töhönen V., Hedborg F., Schofield P., Flam F., Ekström T. J. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet. 1993 May;4(1):94–97. doi: 10.1038/ng0593-94. [DOI] [PubMed] [Google Scholar]
- Polychronakos C., Giannoukakis N., Deal C. L. Imprinting of IGF2, insulin-dependent diabetes, immune function, and apoptosis: a hypothesis. Dev Genet. 1995;17(3):253–262. doi: 10.1002/dvg.1020170310. [DOI] [PubMed] [Google Scholar]
- Rahier J. Relevance of endocrine pancreas nesidioblastosis to hyperinsulinemic hypoglycemia. Diabetes Care. 1989 Feb;12(2):164–166. doi: 10.2337/diacare.12.2.164. [DOI] [PubMed] [Google Scholar]
- Rainier S., Johnson L. A., Dobry C. J., Ping A. J., Grundy P. E., Feinberg A. P. Relaxation of imprinted genes in human cancer. Nature. 1993 Apr 22;362(6422):747–749. doi: 10.1038/362747a0. [DOI] [PubMed] [Google Scholar]
- Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
- Reik W., Brown K. W., Slatter R. E., Sartori P., Elliott M., Maher E. R. Allelic methylation of H19 and IGF2 in the Beckwith-Wiedemann syndrome. Hum Mol Genet. 1994 Aug;3(8):1297–1301. doi: 10.1093/hmg/3.8.1297. [DOI] [PubMed] [Google Scholar]
- Santer R., Hoffmann H., Suttorp M., Simeoni E., Schaub J. Discordance for hyperinsulinemic hypoglycemia in monozygotic twins. J Pediatr. 1995 Jun;126(6):1017–1017. doi: 10.1016/s0022-3476(95)70238-5. [DOI] [PubMed] [Google Scholar]
- Sasaki H., Jones P. A., Chaillet J. R., Ferguson-Smith A. C., Barton S. C., Reik W., Surani M. A. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 1992 Oct;6(10):1843–1856. doi: 10.1101/gad.6.10.1843. [DOI] [PubMed] [Google Scholar]
- Scappaticci S., Brandi M. L., Capra E., Cortinovis M., Maraschio P., Fraccaro M. Cytogenetics of multiple endocrine neoplasia syndrome. II. Chromosome abnormalities in an insulinoma and a glucagonoma from two subjects with MEN1. Cancer Genet Cytogenet. 1992 Oct 1;63(1):17–21. doi: 10.1016/0165-4608(92)90057-f. [DOI] [PubMed] [Google Scholar]
- Sempoux C., Poggi F., Brunelle F., Saudubray J. M., Fekete C., Rahier J. Nesidioblastosis and persistent neonatal hyperinsulinism. Diabete Metab. 1995 Dec;21(6):402–407. [PubMed] [Google Scholar]
- Steenman M. J., Rainier S., Dobry C. J., Grundy P., Horon I. L., Feinberg A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet. 1994 Jul;7(3):433–439. doi: 10.1038/ng0794-433. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Ueda R., Takahashi T., Takahashi T. Altered imprinting in lung cancer. Nat Genet. 1994 Apr;6(4):332–333. doi: 10.1038/ng0494-332. [DOI] [PubMed] [Google Scholar]
- Thomas P. M., Cote G. J., Wohllk N., Haddad B., Mathew P. M., Rabl W., Aguilar-Bryan L., Gagel R. F., Bryan J. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science. 1995 Apr 21;268(5209):426–429. doi: 10.1126/science.7716548. [DOI] [PubMed] [Google Scholar]
- Thomas P. M., Wohllk N., Huang E., Kuhnle U., Rabl W., Gagel R. F., Cote G. J. Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet. 1996 Sep;59(3):510–518. [PMC free article] [PubMed] [Google Scholar]
- Thomas P., Ye Y., Lightner E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet. 1996 Nov;5(11):1809–1812. doi: 10.1093/hmg/5.11.1809. [DOI] [PubMed] [Google Scholar]
- Thornton P. S., Sumner A. E., Ruchelli E. D., Spielman R. S., Baker L., Stanley C. A. Familial and sporadic hyperinsulinism: histopathologic findings and segregation analysis support a single autosomal recessive disorder. J Pediatr. 1991 Nov;119(5):721–724. doi: 10.1016/s0022-3476(05)80286-0. [DOI] [PubMed] [Google Scholar]
- Weissenbach J., Gyapay G., Dib C., Vignal A., Morissette J., Millasseau P., Vaysseix G., Lathrop M. A second-generation linkage map of the human genome. Nature. 1992 Oct 29;359(6398):794–801. doi: 10.1038/359794a0. [DOI] [PubMed] [Google Scholar]
- Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
- Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
- Yuan L., Qian N., Tycko B. An extended region of biallelic gene expression and rodent-human synteny downstream of the imprinted H19 gene on chromosome 11p15.5. Hum Mol Genet. 1996 Dec;5(12):1931–1937. doi: 10.1093/hmg/5.12.1931. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Tycko B. Monoallelic expression of the human H19 gene. Nat Genet. 1992 Apr;1(1):40–44. doi: 10.1038/ng0492-40. [DOI] [PubMed] [Google Scholar]