Abstract
Vessel wall subendothelial extracellular matrix, a dense mesh formed of collagens, fibronectin, laminin, and proteoglycans, has important roles in lipid and lipoprotein retention and cell adhesion. In atherosclerosis, vessel wall heparan sulfate proteoglycans (HSPG) are decreased and we therefore tested whether selective loss of HSPG affects lipoprotein retention. A matrix synthesized by aortic endothelial cells and a commercially available matrix (Matrigel; , Rutherford, NJ) were used. Treatment of matrix with heparinase/heparitinase (1 U/ml each) increased LDL binding by approximately 1.5-fold. Binding of lipoprotein (a) [Lp(a)] to both subendothelial matrix and Matrigel(R) increased 2-10-fold when the HSPG were removed by heparinase treatment. Incubation of endothelial cells with oxidized LDL (OxLDL) or lysolecithin resulted in decreased matrix proteoglycans and increased Lp(a) retention by matrix. The effect of OxLDL or lysolecithin on endothelial PG was abolished in the presence of HDL. The decrease in matrix HSPG was associated with production of a heparanase-like activity by OxLDL-stimulated endothelial cells. To test whether removal of HSPG exposes fibronectin, a candidate Lp(a) binding protein in the matrix, antifibronectin antibodies were used. The increased Lp(a) binding after HSPG removal was inhibited 60% by antifibronectin antibodies. Similarly, the increased Lp(a) binding to matrix from OxLDL-treated endothelial cells was inhibited by antifibronectin antibodies. We hypothesize that atherogenic lipoproteins stimulate endothelial cell production of heparanase. This enzyme reduces HSPG which in turn promotes Lp(a) retention.
Full Text
The Full Text of this article is available as a PDF (222.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bihari-Varga M., Gruber E., Rotheneder M., Zechner R., Kostner G. M. Interaction of lipoprotein Lp(a) and low density lipoprotein with glycosaminoglycans from human aorta. Arteriosclerosis. 1988 Nov-Dec;8(6):851–857. doi: 10.1161/01.atv.8.6.851. [DOI] [PubMed] [Google Scholar]
- Colburn P., Dietrich C. P., Buonassisi V. Alterations of heparan sulfate moieties in cultured endothelial cells exposed to endotoxin. Arch Biochem Biophys. 1996 Jan 1;325(1):129–138. doi: 10.1006/abbi.1996.0016. [DOI] [PubMed] [Google Scholar]
- Dahlén G. H. Lp(a) lipoprotein in cardiovascular disease. Atherosclerosis. 1994 Aug;108(2):111–126. doi: 10.1016/0021-9150(94)90106-6. [DOI] [PubMed] [Google Scholar]
- Ernst S., Langer R., Cooney C. L., Sasisekharan R. Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol. 1995;30(5):387–444. doi: 10.3109/10409239509083490. [DOI] [PubMed] [Google Scholar]
- Fisher E. J., McLennan S. V., Yue D. K., Turtle J. R. Cell-associated proteoglycans of retinal pericytes and endothelial cells: modulation by glucose and ascorbic acid. Microvasc Res. 1994 Sep;48(2):179–189. doi: 10.1006/mvre.1994.1048. [DOI] [PubMed] [Google Scholar]
- Frank J. S., Fogelman A. M. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J Lipid Res. 1989 Jul;30(7):967–978. [PubMed] [Google Scholar]
- Friend M., Farrar M. J. A comparison of content-masking procedures for obtaining judgments of discrete affective states. J Acoust Soc Am. 1994 Sep;96(3):1283–1290. doi: 10.1121/1.410276. [DOI] [PubMed] [Google Scholar]
- Galis Z. S., Sukhova G. K., Kranzhöfer R., Clark S., Libby P. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):402–406. doi: 10.1073/pnas.92.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94(6):2493–2503. doi: 10.1172/JCI117619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geller R. L., Ihrcke N. S., Maines J., Lindman B. J., Platt J. L. Loss of heparan sulfate proteoglycan as a manifestation of cellular immunity in vivo and in vitro. Transplant Proc. 1993 Feb;25(1 Pt 1):144–145. [PubMed] [Google Scholar]
- Grimm J., Keller R., de Groot P. G. Laminar flow induces cell polarity and leads to rearrangement of proteoglycan metabolism in endothelial cells. Thromb Haemost. 1988 Dec 22;60(3):437–441. [PubMed] [Google Scholar]
- Guretzki H. J., Gerbitz K. D., Olgemöller B., Schleicher E. Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Atherosclerosis. 1994 May;107(1):15–24. doi: 10.1016/0021-9150(94)90137-6. [DOI] [PubMed] [Google Scholar]
- Guretzki H. J., Schleicher E., Gerbitz K. D., Olgemöller B. Heparin induces endothelial extracellular matrix alterations and barrier dysfunction. Am J Physiol. 1994 Oct;267(4 Pt 1):C946–C954. doi: 10.1152/ajpcell.1994.267.4.C946. [DOI] [PubMed] [Google Scholar]
- Guyton J. R., Klemp K. F. Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol. 1996 Jan;16(1):4–11. doi: 10.1161/01.atv.16.1.4. [DOI] [PubMed] [Google Scholar]
- Hajjar K. A., Nachman R. L. The role of lipoprotein(a) in atherogenesis and thrombosis. Annu Rev Med. 1996;47:423–442. doi: 10.1146/annurev.med.47.1.423. [DOI] [PubMed] [Google Scholar]
- Heinecke J. W., Rosen H., Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest. 1984 Nov;74(5):1890–1894. doi: 10.1172/JCI111609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hennig B., Lipke D. W., Boissonneault G. A., Ramasamy S. Role of fatty acids and eicosanoids in modulating proteoglycan metabolism in endothelial cells. Prostaglandins Leukot Essent Fatty Acids. 1995 Nov;53(5):315–324. doi: 10.1016/0952-3278(95)90050-0. [DOI] [PubMed] [Google Scholar]
- Hoff H. F., Wagner W. D. Plasma low density lipoprotein accumulation in aortas of hypercholesterolemic swine correlates with modifications in aortic glycosaminoglycan composition. Atherosclerosis. 1986 Sep;61(3):231–236. doi: 10.1016/0021-9150(86)90143-7. [DOI] [PubMed] [Google Scholar]
- Hollmann J., Schmidt A., von Bassewitz D. B., Buddecke E. Relationship of sulfated glycosaminoglycans and cholesterol content in normal and arteriosclerotic human aorta. Arteriosclerosis. 1989 Mar-Apr;9(2):154–158. doi: 10.1161/01.atv.9.2.154. [DOI] [PubMed] [Google Scholar]
- Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iozzo R. V., Cohen I. R., Grässel S., Murdoch A. D. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J. 1994 Sep 15;302(Pt 3):625–639. doi: 10.1042/bj3020625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson D. G., Usher D. C., Rader D. J., Lavi E. Apolipoprotein(a) deposition in atherosclerotic plaques of cerebral vessels. A potential role for endothelial cells in lesion formation. Am J Pathol. 1995 Dec;147(6):1567–1574. [PMC free article] [PubMed] [Google Scholar]
- Kakolyris S., Karakitsos P., Tzardi M., Agapitos E. Immunohistochemical detection of fibronectin in early and advanced atherosclerosis. In Vivo. 1995 Jan-Feb;9(1):35–40. [PubMed] [Google Scholar]
- Katsuda S., Okada Y., Minamoto T., Oda Y., Matsui Y., Nakanishi I. Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arterioscler Thromb. 1992 Apr;12(4):494–502. doi: 10.1161/01.atv.12.4.494. [DOI] [PubMed] [Google Scholar]
- Kreuzer J., Lloyd M. B., Bok D., Fless G. M., Scanu A. M., Lusis A. J., Haberland M. E. Lipoprotein (a) displays increased accumulation compared with low-density lipoprotein in the murine arterial wall. Chem Phys Lipids. 1994 Jan;67-68:175–190. doi: 10.1016/0009-3084(94)90137-6. [DOI] [PubMed] [Google Scholar]
- Kruth H. S. Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis. 1985 Nov;57(2-3):337–341. doi: 10.1016/0021-9150(85)90045-0. [DOI] [PubMed] [Google Scholar]
- Liu A. C., Lawn R. M. Vascular interactions of lipoprotein (a). Curr Opin Lipidol. 1994 Aug;5(4):269–273. doi: 10.1097/00041433-199408000-00005. [DOI] [PubMed] [Google Scholar]
- Moliterno D. J., Lange R. A., Meidell R. S., Willard J. E., Leffert C. C., Gerard R. D., Boerwinkle E., Hobbs H. H., Hillis L. D. Relation of plasma lipoprotein(a) to infarct artery patency in survivors of myocardial infarction. Circulation. 1993 Sep;88(3):935–940. doi: 10.1161/01.cir.88.3.935. [DOI] [PubMed] [Google Scholar]
- Moser T. L., Enghild J. J., Pizzo S. V., Stack M. S. The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator. J Biol Chem. 1993 Sep 5;268(25):18917–18923. [PubMed] [Google Scholar]
- Nielsen L. B., Stender S., Kjeldsen K., Nordestgaard B. G. Specific accumulation of lipoprotein(a) in balloon-injured rabbit aorta in vivo. Circ Res. 1996 Apr;78(4):615–626. doi: 10.1161/01.res.78.4.615. [DOI] [PubMed] [Google Scholar]
- Nievelstein-Post P., Mottino G., Fogelman A., Frank J. An ultrastructural study of lipoprotein accumulation in cardiac valves of the rabbit. Arterioscler Thromb. 1994 Jul;14(7):1151–1161. doi: 10.1161/01.atv.14.7.1151. [DOI] [PubMed] [Google Scholar]
- Ohara Y., Peterson T. E., Zheng B., Kuo J. F., Harrison D. G. Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation. Arterioscler Thromb. 1994 Jun;14(6):1007–1013. doi: 10.1161/01.atv.14.6.1007. [DOI] [PubMed] [Google Scholar]
- Oishi K., Raynor R. L., Charp P. A., Kuo J. F. Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J Biol Chem. 1988 May 15;263(14):6865–6871. [PubMed] [Google Scholar]
- Pepin J. M., O'Neil J. A., Hoff H. F. Quantification of apo[a] and apoB in human atherosclerotic lesions. J Lipid Res. 1991 Feb;32(2):317–327. [PubMed] [Google Scholar]
- Rath M., Niendorf A., Reblin T., Dietel M., Krebber H. J., Beisiegel U. Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis. 1989 Sep-Oct;9(5):579–592. doi: 10.1161/01.atv.9.5.579. [DOI] [PubMed] [Google Scholar]
- Rhoads G. G., Dahlen G., Berg K., Morton N. E., Dannenberg A. L. Lp(a) lipoprotein as a risk factor for myocardial infarction. JAMA. 1986 Nov 14;256(18):2540–2544. [PubMed] [Google Scholar]
- Rouy D., Koschinsky M. L., Fleury V., Chapman J., Anglés-Cano E. Apolipoprotein(a) and plasminogen interactions with fibrin: a study with recombinant apolipoprotein(a) and isolated plasminogen fragments. Biochemistry. 1992 Jul 14;31(27):6333–6339. doi: 10.1021/bi00142a024. [DOI] [PubMed] [Google Scholar]
- Salisbury B. G., Hajjar D. P., Minick C. R. Altered glycosaminoglycan metabolism in injured arterial wall. Exp Mol Pathol. 1985 Jun;42(3):306–319. doi: 10.1016/0014-4800(85)90081-4. [DOI] [PubMed] [Google Scholar]
- Salonen E. M., Jauhiainen M., Zardi L., Vaheri A., Ehnholm C. Lipoprotein(a) binds to fibronectin and has serine proteinase activity capable of cleaving it. EMBO J. 1989 Dec 20;8(13):4035–4040. doi: 10.1002/j.1460-2075.1989.tb08586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scanu A. M., Lawn R. M., Berg K. Lipoprotein(a) and atherosclerosis. Ann Intern Med. 1991 Aug 1;115(3):209–218. doi: 10.7326/0003-4819-115-3-209. [DOI] [PubMed] [Google Scholar]
- Schwenke D. C., Carew T. E. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis. 1989 Nov-Dec;9(6):908–918. doi: 10.1161/01.atv.9.6.908. [DOI] [PubMed] [Google Scholar]
- Shepherd J., Bedford D. K., Morgan H. G. Radioiodination of human low density lipoprotein: a comparison of four methods. Clin Chim Acta. 1976 Jan 2;66(1):97–109. doi: 10.1016/0009-8981(76)90376-4. [DOI] [PubMed] [Google Scholar]
- Sivaram P., Klein M. G., Goldberg I. J. Identification of a heparin-releasable lipoprotein lipase binding protein from endothelial cells. J Biol Chem. 1992 Aug 15;267(23):16517–16522. [PubMed] [Google Scholar]
- Sivaram P., Obunike J. C., Goldberg I. J. Lysolecithin-induced alteration of subendothelial heparan sulfate proteoglycans increases monocyte binding to matrix. J Biol Chem. 1995 Dec 15;270(50):29760–29765. doi: 10.1074/jbc.270.50.29760. [DOI] [PubMed] [Google Scholar]
- Skubitz A. P., McCarthy J. B., Charonis A. S., Furcht L. T. Localization of three distinct heparin-binding domains of laminin by monoclonal antibodies. J Biol Chem. 1988 Apr 5;263(10):4861–4868. [PubMed] [Google Scholar]
- Stenman S., von Smitten K., Vaheri A. Fibronectin and atherosclerosis. Acta Med Scand Suppl. 1980;642:165–170. doi: 10.1111/j.0954-6820.1980.tb10949.x. [DOI] [PubMed] [Google Scholar]
- Stins M. F., Maxfield F. R., Goldberg I. J. Polarized binding of lipoprotein lipase to endothelial cells. Implications for its physiological actions. Arterioscler Thromb. 1992 Dec;12(12):1437–1446. doi: 10.1161/01.atv.12.12.1437. [DOI] [PubMed] [Google Scholar]
- Tanouchi J., Uematsu M., Kitabatake A., Masuyama T., Ito H., Doi Y., Inoue M., Kamada T. Sequential appearance of fibronectin, collagen and elastin during fatty streak initiation and maturation in hypercholesterolemic fat-fed rabbits. Jpn Circ J. 1992 Jul;56(7):649–656. doi: 10.1253/jcj.56.649. [DOI] [PubMed] [Google Scholar]
- Timpl R. Proteoglycans of basement membranes. EXS. 1994;70:123–144. doi: 10.1007/978-3-0348-7545-5_8. [DOI] [PubMed] [Google Scholar]
- Vlodavsky I., Miao H. Q., Medalion B., Danagher P., Ron D. Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev. 1996 Jun;15(2):177–186. doi: 10.1007/BF00437470. [DOI] [PubMed] [Google Scholar]
- Völker W., Schmidt A., Oortmann W., Broszey T., Faber V., Buddecke E. Mapping of proteoglycans in atherosclerotic lesions. Eur Heart J. 1990 Aug;11 (Suppl E):29–40. doi: 10.1093/eurheartj/11.suppl_e.29. [DOI] [PubMed] [Google Scholar]
- Wagner W. D. Proteoglycan structure and function as related to atherosclerosis. Ann N Y Acad Sci. 1985;454:52–68. doi: 10.1111/j.1749-6632.1985.tb11844.x. [DOI] [PubMed] [Google Scholar]
- Watson A. D., Berliner J. A., Hama S. Y., La Du B. N., Faull K. F., Fogelman A. M., Navab M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest. 1995 Dec;96(6):2882–2891. doi: 10.1172/JCI118359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson A. D., Navab M., Hama S. Y., Sevanian A., Prescott S. M., Stafforini D. M., McIntyre T. M., Du B. N., Fogelman A. M., Berliner J. A. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest. 1995 Feb;95(2):774–782. doi: 10.1172/JCI117726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wight T. N. The extracellular matrix and atherosclerosis. Curr Opin Lipidol. 1995 Oct;6(5):326–334. doi: 10.1097/00041433-199510000-00013. [DOI] [PubMed] [Google Scholar]
- van der Hoek Y. Y., Sangrar W., Côté G. P., Kastelein J. J., Koschinsky M. L. Binding of recombinant apolipoprotein(a) to extracellular matrix proteins. Arterioscler Thromb. 1994 Nov;14(11):1792–1798. doi: 10.1161/01.atv.14.11.1792. [DOI] [PubMed] [Google Scholar]