Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 15;100(4):875–885. doi: 10.1172/JCI119603

The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets.

K E Bornfeldt 1, J S Campbell 1, H Koyama 1, G M Argast 1, C C Leslie 1, E W Raines 1, E G Krebs 1, R Ross 1
PMCID: PMC508260  PMID: 9259587

Abstract

Activation of the classical mitogen-activated protein kinase (MAPK) pathway leads to proliferation of many cell types. Accordingly, an inhibitor of MAPK kinase, PD 098059, inhibits PDGF-induced proliferation of human arterial smooth muscle cells (SMCs) that do not secrete growth-inhibitory PGs such as PGE2. In striking contrast, in SMCs that express the inducible form of cyclooxygenase (COX-2), activation of MAPK serves as a negative regulator of proliferation. In these cells, PDGF-induced MAPK activation leads to cytosolic phospholipase A2 activation, PGE2 release, and subsequent activation of the cAMP-dependent protein kinase (PKA), which acts as a strong inhibitor of SMC proliferation. Inhibition of either MAPK kinase signaling or of COX-2 in these cells releases them from the influence of the growth-inhibitory PGs and results in the subsequent cell cycle traverse and proliferation. Thus, the MAPK pathway mediates either proliferation or growth inhibition in human arterial SMCs depending on the availability of specific downstream enzyme targets.

Full Text

The Full Text of this article is available as a PDF (294.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam L. P., Franklin M. T., Raff G. J., Hathaway D. R. Activation of mitogen-activated protein kinase in porcine carotid arteries. Circ Res. 1995 Feb;76(2):183–190. doi: 10.1161/01.res.76.2.183. [DOI] [PubMed] [Google Scholar]
  2. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  3. Assender J. W., Southgate K. M., Hallett M. B., Newby A. C. Inhibition of proliferation, but not of Ca2+ mobilization, by cyclic AMP and GMP in rabbit aortic smooth-muscle cells. Biochem J. 1992 Dec 1;288(Pt 2):527–532. doi: 10.1042/bj2880527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bornfeldt K. E., Raines E. W., Nakano T., Graves L. M., Krebs E. G., Ross R. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest. 1994 Mar;93(3):1266–1274. doi: 10.1172/JCI117081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boulton T. G., Yancopoulos G. D., Gregory J. S., Slaughter C., Moomaw C., Hsu J., Cobb M. H. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science. 1990 Jul 6;249(4964):64–67. doi: 10.1126/science.2164259. [DOI] [PubMed] [Google Scholar]
  6. Chan C. C., Boyce S., Brideau C., Ford-Hutchinson A. W., Gordon R., Guay D., Hill R. G., Li C. S., Mancini J., Penneton M. Pharmacology of a selective cyclooxygenase-2 inhibitor, L-745,337: a novel nonsteroidal anti-inflammatory agent with an ulcerogenic sparing effect in rat and nonhuman primate stomach. J Pharmacol Exp Ther. 1995 Sep;274(3):1531–1537. [PubMed] [Google Scholar]
  7. Chen Q. R., Miyaura C., Higashi S., Murakami M., Kudo I., Saito S., Hiraide T., Shibasaki Y., Suda T. Activation of cytosolic phospholipase A2 by platelet-derived growth factor is essential for cyclooxygenase-2-dependent prostaglandin E2 synthesis in mouse osteoblasts cultured with interleukin-1. J Biol Chem. 1997 Feb 28;272(9):5952–5958. doi: 10.1074/jbc.272.9.5952. [DOI] [PubMed] [Google Scholar]
  8. Chen Q., Kinch M. S., Lin T. H., Burridge K., Juliano R. L. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem. 1994 Oct 28;269(43):26602–26605. [PubMed] [Google Scholar]
  9. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  10. Cowley S., Paterson H., Kemp P., Marshall C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 1994 Jun 17;77(6):841–852. doi: 10.1016/0092-8674(94)90133-3. [DOI] [PubMed] [Google Scholar]
  11. Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
  12. DeWitt D., Smith W. L. Yes, but do they still get headaches? Cell. 1995 Nov 3;83(3):345–348. doi: 10.1016/0092-8674(95)90109-4. [DOI] [PubMed] [Google Scholar]
  13. Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
  14. Dinchuk J. E., Car B. D., Focht R. J., Johnston J. J., Jaffee B. D., Covington M. B., Contel N. R., Eng V. M., Collins R. J., Czerniak P. M. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature. 1995 Nov 23;378(6555):406–409. doi: 10.1038/378406a0. [DOI] [PubMed] [Google Scholar]
  15. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Duff J. L., Marrero M. B., Paxton W. G., Schieffer B., Bernstein K. E., Berk B. C. Angiotensin II signal transduction and the mitogen-activated protein kinase pathway. Cardiovasc Res. 1995 Oct;30(4):511–517. [PubMed] [Google Scholar]
  17. Fujitani Y., Ninomiya H., Okada T., Urade Y., Masaki T. Suppression of endothelin-1-induced mitogenic responses of human aortic smooth muscle cells by interleukin-1 beta. J Clin Invest. 1995 Jun;95(6):2474–2482. doi: 10.1172/JCI117948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fukuo K., Morimoto S., Jiang B., Inoue T., Nabata T., Ogihara T. Elastase enhances cAMP accumulation and the inhibition of DNA synthesis induced by OP-41483, a stable prostacyclin analogue, in vascular smooth muscle cells. Atherosclerosis. 1994 Sep 30;110(1):111–117. doi: 10.1016/0021-9150(94)90074-4. [DOI] [PubMed] [Google Scholar]
  19. Futaki N., Takahashi S., Yokoyama M., Arai I., Higuchi S., Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins. 1994 Jan;47(1):55–59. doi: 10.1016/0090-6980(94)90074-4. [DOI] [PubMed] [Google Scholar]
  20. Gagelin C., Pierre M., Toru-Delbauffe D. Inhibition of G1 cyclin expression and G1 cyclin-dependent protein kinases by cAMP in an astrocytic cell line. Biochem Biophys Res Commun. 1994 Nov 30;205(1):923–929. doi: 10.1006/bbrc.1994.2753. [DOI] [PubMed] [Google Scholar]
  21. Gould G. W., Cuenda A., Thomson F. J., Cohen P. The activation of distinct mitogen-activated protein kinase cascades is required for the stimulation of 2-deoxyglucose uptake by interleukin-1 and insulin-like growth factor-1 in KB cells. Biochem J. 1995 Nov 1;311(Pt 3):735–738. doi: 10.1042/bj3110735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Graves L. M., Bornfeldt K. E., Argast G. M., Krebs E. G., Kong X., Lin T. A., Lawrence J. C., Jr cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7222–7226. doi: 10.1073/pnas.92.16.7222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Graves L. M., Bornfeldt K. E., Raines E. W., Potts B. C., Macdonald S. G., Ross R., Krebs E. G. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10300–10304. doi: 10.1073/pnas.90.21.10300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Graves L. M., Bornfeldt K. E., Sidhu J. S., Argast G. M., Raines E. W., Ross R., Leslie C. C., Krebs E. G. Platelet-derived growth factor stimulates protein kinase A through a mitogen-activated protein kinase-dependent pathway in human arterial smooth muscle cells. J Biol Chem. 1996 Jan 5;271(1):505–511. doi: 10.1074/jbc.271.1.505. [DOI] [PubMed] [Google Scholar]
  25. Hill C. S., Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995 Jan 27;80(2):199–211. doi: 10.1016/0092-8674(95)90403-4. [DOI] [PubMed] [Google Scholar]
  26. Hultgãrdh-Nilsson A., Querol-Ferrer V., Jonzon B., Krondahl U., Nilsson J. Cyclic AMP, early response gene expression, and DNA synthesis in rat smooth muscle cells. Exp Cell Res. 1994 Sep;214(1):297–302. doi: 10.1006/excr.1994.1261. [DOI] [PubMed] [Google Scholar]
  27. Karim S., Habib A., Lévy-Toledano S., Maclouf J. Cyclooxygenase-1 and -2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J Biol Chem. 1996 May 17;271(20):12042–12048. doi: 10.1074/jbc.271.20.12042. [DOI] [PubMed] [Google Scholar]
  28. Karlsson C., Paulsson Y. Age related induction of platelet-derived growth factor A-chain mRNA in normal human fibroblasts. J Cell Physiol. 1994 Feb;158(2):256–262. doi: 10.1002/jcp.1041580207. [DOI] [PubMed] [Google Scholar]
  29. Kato J. Y., Matsuoka M., Polyak K., Massagué J., Sherr C. J. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell. 1994 Nov 4;79(3):487–496. doi: 10.1016/0092-8674(94)90257-7. [DOI] [PubMed] [Google Scholar]
  30. Lai K., Wang H., Lee W. S., Jain M. K., Lee M. E., Haber E. Mitogen-activated protein kinase phosphatase-1 in rat arterial smooth muscle cell proliferation. J Clin Invest. 1996 Oct 1;98(7):1560–1567. doi: 10.1172/JCI118949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Langenbach R., Morham S. G., Tiano H. F., Loftin C. D., Ghanayem B. I., Chulada P. C., Mahler J. F., Lee C. A., Goulding E. H., Kluckman K. D. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 1995 Nov 3;83(3):483–492. doi: 10.1016/0092-8674(95)90126-4. [DOI] [PubMed] [Google Scholar]
  32. Lee S. H., Soyoola E., Chanmugam P., Hart S., Sun W., Zhong H., Liou S., Simmons D., Hwang D. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem. 1992 Dec 25;267(36):25934–25938. [PubMed] [Google Scholar]
  33. Levitzki A., Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science. 1995 Mar 24;267(5205):1782–1788. doi: 10.1126/science.7892601. [DOI] [PubMed] [Google Scholar]
  34. Libby P., Warner S. J., Friedman G. B. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J Clin Invest. 1988 Feb;81(2):487–498. doi: 10.1172/JCI113346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lin T. A., Kong X., Saltiel A. R., Blackshear P. J., Lawrence J. C., Jr Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem. 1995 Aug 4;270(31):18531–18538. doi: 10.1074/jbc.270.31.18531. [DOI] [PubMed] [Google Scholar]
  36. Loesberg C., van Wijk R., Zandbergen J., van Aken W. G., van Mourik J. A., de Groot P. G. Cell cycle-dependent inhibition of human vascular smooth muscle cell proliferation by prostaglandin E1. Exp Cell Res. 1985 Sep;160(1):117–125. doi: 10.1016/0014-4827(85)90241-1. [DOI] [PubMed] [Google Scholar]
  37. Majesky M. W., Giachelli C. M., Reidy M. A., Schwartz S. M. Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury. Circ Res. 1992 Oct;71(4):759–768. doi: 10.1161/01.res.71.4.759. [DOI] [PubMed] [Google Scholar]
  38. Mansour S. J., Matten W. T., Hermann A. S., Candia J. M., Rong S., Fukasawa K., Vande Woude G. F., Ahn N. G. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 1994 Aug 12;265(5174):966–970. doi: 10.1126/science.8052857. [DOI] [PubMed] [Google Scholar]
  39. Marshall C. J. Opportunities for pharmacological intervention in the ras pathway. Ann Oncol. 1995;6 (Suppl 1):63–67. doi: 10.1093/annonc/6.suppl_1.s63. [DOI] [PubMed] [Google Scholar]
  40. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  41. Monfar M., Lemon K. P., Grammer T. C., Cheatham L., Chung J., Vlahos C. J., Blenis J. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP. Mol Cell Biol. 1995 Jan;15(1):326–337. doi: 10.1128/mcb.15.1.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Morham S. G., Langenbach R., Loftin C. D., Tiano H. F., Vouloumanos N., Jennette J. C., Mahler J. F., Kluckman K. D., Ledford A., Lee C. A. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell. 1995 Nov 3;83(3):473–482. doi: 10.1016/0092-8674(95)90125-6. [DOI] [PubMed] [Google Scholar]
  43. Pritchard K. A., Jr, O'Banion M. K., Miano J. M., Vlasic N., Bhatia U. G., Young D. A., Stemerman M. B. Induction of cyclooxygenase-2 in rat vascular smooth muscle cells in vitro and in vivo. J Biol Chem. 1994 Mar 18;269(11):8504–8509. [PubMed] [Google Scholar]
  44. Pumiglia K. M., Decker S. J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):448–452. doi: 10.1073/pnas.94.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Raines E. W., Dower S. K., Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science. 1989 Jan 20;243(4889):393–396. doi: 10.1126/science.2783498. [DOI] [PubMed] [Google Scholar]
  46. Rimarachin J. A., Jacobson J. A., Szabo P., Maclouf J., Creminon C., Weksler B. B. Regulation of cyclooxygenase-2 expression in aortic smooth muscle cells. Arterioscler Thromb. 1994 Jul;14(7):1021–1031. doi: 10.1161/01.atv.14.7.1021. [DOI] [PubMed] [Google Scholar]
  47. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  48. Seger R., Ahn N. G., Posada J., Munar E. S., Jensen A. M., Cooper J. A., Cobb M. H., Krebs E. G. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem. 1992 Jul 15;267(20):14373–14381. [PubMed] [Google Scholar]
  49. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  50. Seger R., Seger D., Reszka A. A., Munar E. S., Eldar-Finkelman H., Dobrowolska G., Jensen A. M., Campbell J. S., Fischer E. H., Krebs E. G. Overexpression of mitogen-activated protein kinase kinase (MAPKK) and its mutants in NIH 3T3 cells. Evidence that MAPKK involvement in cellular proliferation is regulated by phosphorylation of serine residues in its kinase subdomains VII and VIII. J Biol Chem. 1994 Oct 14;269(41):25699–25709. [PubMed] [Google Scholar]
  51. Serhan C. N., Haeggström J. Z., Leslie C. C. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 1996 Aug;10(10):1147–1158. doi: 10.1096/fasebj.10.10.8751717. [DOI] [PubMed] [Google Scholar]
  52. Servant M. J., Giasson E., Meloche S. Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. J Biol Chem. 1996 Jul 5;271(27):16047–16052. doi: 10.1074/jbc.271.27.16047. [DOI] [PubMed] [Google Scholar]
  53. Sevetson B. R., Kong X., Lawrence J. C., Jr Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10305–10309. doi: 10.1073/pnas.90.21.10305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Traverse S., Gomez N., Paterson H., Marshall C., Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J. 1992 Dec 1;288(Pt 2):351–355. doi: 10.1042/bj2880351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tseng H., Peterson T. E., Berk B. C. Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res. 1995 Nov;77(5):869–878. doi: 10.1161/01.res.77.5.869. [DOI] [PubMed] [Google Scholar]
  56. Vago T., Bevilacqua M., Norbiato G. Effect of nimesulide action time dependence on selectivity towards prostaglandin G/H synthase/cyclooxygenase activity. Arzneimittelforschung. 1995 Oct;45(10):1096–1098. [PubMed] [Google Scholar]
  57. Vane J. R., Botting R. M. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res. 1995 Jan;44(1):1–10. doi: 10.1007/BF01630479. [DOI] [PubMed] [Google Scholar]
  58. Whitmarsh A. J., Shore P., Sharrocks A. D., Davis R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science. 1995 Jul 21;269(5222):403–407. doi: 10.1126/science.7618106. [DOI] [PubMed] [Google Scholar]
  59. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  60. Xu Q., Liu Y., Gorospe M., Udelsman R., Holbrook N. J. Acute hypertension activates mitogen-activated protein kinases in arterial wall. J Clin Invest. 1996 Jan 15;97(2):508–514. doi: 10.1172/JCI118442. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES