Abstract
Physical dimensions of a membrane component influence its phase preference upon hydration. A dimensionless packing parameter, S, given by S = V/al, where V is the hydrocarbon volume, a is the area of the head group, and l is the critical length of the hydrocarbon chain, is useful in determining the phase preference of a lipid, and the value of S usually lies between 0.5 and 1 for bilayers. Here, the value of S is calculated for phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) as a function of chain length, and it is shown that diacylPC having an S value of less than 0.74 does not form bilayers. For example, diacylPC, up to a chain length of eight carbon atoms, forms only micelles, whereas higher homologs with S greater than 0.74 form bilayers. It is also shown that when lipid molecules having complementary shapes associate, the value of S becomes additive. Using the additivity of S, a number of experimental results for lipid mixtures can be explained. For example, lysoPC and cholesterol form lamellar structures between 45 and approximately 80 mol% cholesterol, and the additive value of S for this region is between 0.74 and 1. Similarly, the additivity of S shows that the maximum amount of cholesterol that can be incorporated into PC bilayers is 50 mol%, in agreement with experimental studies.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BANGHAM A. D., HORNE R. W. NEGATIVE STAINING OF PHOSPHOLIPIDS AND THEIR STRUCTURAL MODIFICATION BY SURFACE-ACTIVE AGENTS AS OBSERVED IN THE ELECTRON MICROSCOPE. J Mol Biol. 1964 May;8:660–668. doi: 10.1016/s0022-2836(64)80115-7. [DOI] [PubMed] [Google Scholar]
- Bittman R., Clejan S., Jain M. K., Deroo P. W., Rosenthal A. F. Effects of sterols on permeability and phase transitions of bilayers from phosphatidylcholines lacking acyl groups. Biochemistry. 1981 May 12;20(10):2790–2795. doi: 10.1021/bi00513a013. [DOI] [PubMed] [Google Scholar]
- Burns R. A., Jr, Roberts M. F. Carbon-13 nuclear magnetic resonance studies of short-chain lecithins. Motional and conformational characteristics of micellar and monomeric phospholipid. Biochemistry. 1980 Jun 24;19(13):3100–3106. doi: 10.1021/bi00554a041. [DOI] [PubMed] [Google Scholar]
- Carnie S., Israelachvili J. N., Pailthorpe B. A. Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim Biophys Acta. 1979 Jul 5;554(2):340–357. doi: 10.1016/0005-2736(79)90375-4. [DOI] [PubMed] [Google Scholar]
- Cullis P. R., De Kruijff B. Polymorphic phase behaviour of lipid mixtures as detected by 31P NMR. Evidence that cholesterol may destabilize bilayer structure in membrane systems containing phosphatidylethanolamine. Biochim Biophys Acta. 1978 Feb 21;507(2):207–218. doi: 10.1016/0005-2736(78)90417-0. [DOI] [PubMed] [Google Scholar]
- DE BERNARD L. Associations moléculaires entre les lipides. II. Lecithine et cholestérol. Bull Soc Chim Biol (Paris) 1958;40(1):161–170. [PubMed] [Google Scholar]
- De Kruijff B., Cullis P. R., Radda G. K. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles. Biochim Biophys Acta. 1976 Jul 15;436(4):729–740. doi: 10.1016/0005-2736(76)90402-8. [DOI] [PubMed] [Google Scholar]
- Elamrani K., Blume A. Incorporation kinetics of lysolecithin into lecithin vesicles. Kinetics of lysolecithin-induced vesicle fusion. Biochemistry. 1982 Feb 2;21(3):521–526. doi: 10.1021/bi00532a017. [DOI] [PubMed] [Google Scholar]
- Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauser H. Mechanism of spontaneous vesiculation. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5351–5355. doi: 10.1073/pnas.86.14.5351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui S. W., Sen A. Effects of lipid packing on polymorphic phase behavior and membrane properties. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5825–5829. doi: 10.1073/pnas.86.15.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue K., Kitagawa T. Effect of exogenous lysolecithin on liposomal membranes. Its relation to membrane fluidity. Biochim Biophys Acta. 1974 Sep 23;363(3):361–372. doi: 10.1016/0005-2736(74)90075-3. [DOI] [PubMed] [Google Scholar]
- Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
- Israelachvili J. N., Mitchell D. J. A model for the packing of lipids in bilayer membranes. Biochim Biophys Acta. 1975 Apr 21;389(1):13–19. doi: 10.1016/0005-2736(75)90381-8. [DOI] [PubMed] [Google Scholar]
- Jain M. K., van Echteld C. J., Ramirez F., de Gier J., de Haas G. H., van Deenen L. L. Association of lysophosphatidylcholine with fatty acids in aqueous phase to form bilayers. Nature. 1980 Apr 3;284(5755):486–487. doi: 10.1038/284486a0. [DOI] [PubMed] [Google Scholar]
- Kitagawa T., Inoue K., Nojima S. Properties of liposomal membranes containing lysolecithin. J Biochem. 1976 Jun;79(6):1123–1133. doi: 10.1093/oxfordjournals.jbchem.a131168. [DOI] [PubMed] [Google Scholar]
- Kumar V. V., Anderson W. H., Thompson E. W., Malewicz B., Baumann W. J. Asymmetry of lysophosphatidylcholine/cholesterol vesicles is sensitive to cholesterol modulation. Biochemistry. 1988 Jan 12;27(1):393–398. doi: 10.1021/bi00401a059. [DOI] [PubMed] [Google Scholar]
- Kumar V. V., Baumann W. J. Bilayer asymmetry in lysophosphatidylcholine/cholesterol (1:1) vesicles. A phosphorus-31 NMR study. Biochem Biophys Res Commun. 1986 Aug 29;139(1):25–30. doi: 10.1016/s0006-291x(86)80074-2. [DOI] [PubMed] [Google Scholar]
- Kumar V. V., Malewicz B., Baumann W. J. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect. Biophys J. 1989 Apr;55(4):789–792. doi: 10.1016/S0006-3495(89)82877-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lasch J., Hoffmann J., Omelyanenko W. G., Klibanov A. A., Torchilin V. P., Binder H., Gawrisch K. Interaction of Triton X-100 and octyl glucoside with liposomal membranes at sublytic and lytic concentrations. Spectroscopic studies. Biochim Biophys Acta. 1990 Feb 28;1022(2):171–180. doi: 10.1016/0005-2736(90)90111-z. [DOI] [PubMed] [Google Scholar]
- Lee Y., Chan S. I. Effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles. Biochemistry. 1977 Apr 5;16(7):1303–1309. doi: 10.1021/bi00626a010. [DOI] [PubMed] [Google Scholar]
- Madden T. D., Cullis P. R. Stabilization of bilayer structure for unsaturated phosphatidylethanolamines by detergents. Biochim Biophys Acta. 1982 Jan 4;684(1):149–153. doi: 10.1016/0005-2736(82)90061-x. [DOI] [PubMed] [Google Scholar]
- Melchior D. L., Scavitto F. J., Steim J. M. Dilatometry of dipalmitoyllecithin-cholesterol bilayers. Biochemistry. 1980 Oct 14;19(21):4828–4834. doi: 10.1021/bi00562a018. [DOI] [PubMed] [Google Scholar]
- Morris D. A., McNeil R., Castellino F. J., Thomas J. K. Interaction of lysophosphatidylcholine with phosphatidylcholine bilayers. A photo-physical and NMR study. Biochim Biophys Acta. 1980 Jul;599(2):380–390. doi: 10.1016/0005-2736(80)90185-6. [DOI] [PubMed] [Google Scholar]
- Murari R., Murari M. P., Baumann W. J. Sterol orientations in phosphatidylcholine liposomes as determined by deuterium NMR. Biochemistry. 1986 Mar 11;25(5):1062–1067. doi: 10.1021/bi00353a017. [DOI] [PubMed] [Google Scholar]
- Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purdon A. D., Hsia J. C., Pinteric L., Tinker D. O., Rand R. P. Lysolecithin-cholesterol interaction. A spin-resonance and electron-micrographic study. Can J Biochem. 1975 Feb;53(2):196–206. doi: 10.1139/o75-028. [DOI] [PubMed] [Google Scholar]
- Ralston E., Blumenthal R., Weinstein J. N., Sharrow S. O., Henkart P. Lysophosphatidylcholine in liposomal membranes: enhanced permeability but little effect on transfer of a water-soluble fluorescent marker into human lymphocytes. Biochim Biophys Acta. 1980 Apr 24;597(3):543–551. doi: 10.1016/0005-2736(80)90226-6. [DOI] [PubMed] [Google Scholar]
- Ramsammy L. S., Brockerhoff H. Lysophosphatidylcholine-cholesterol complex. J Biol Chem. 1982 Apr 10;257(7):3570–3574. [PubMed] [Google Scholar]
- Rand R. P., Pangborn W. A., Purdon A. D., Tinker D. O. Lysolecithin and cholesterol interact stoichiometrically forming bimolecular lamellar structures in the presence of excess water, of lysolecithin or cholesterol. Can J Biochem. 1975 Feb;53(2):189–195. doi: 10.1139/o75-027. [DOI] [PubMed] [Google Scholar]
- Tate M. W., Gruner S. M. Lipid polymorphism of mixtures of dioleoylphosphatidylethanolamine and saturated and monounsaturated phosphatidylcholines of various chain lengths. Biochemistry. 1987 Jan 13;26(1):231–236. doi: 10.1021/bi00375a031. [DOI] [PubMed] [Google Scholar]
- Tausk R. J., Karmiggelt J., Oudshoorn C., Overbeek J. T. Physical chemical studies of short-chain lecithin homologues. I. Influence of the chain length of the fatty acid ester and of electrolytes on the critical micelle concentration. Biophys Chem. 1974 Feb;1(3):175–183. doi: 10.1016/0301-4622(74)80004-9. [DOI] [PubMed] [Google Scholar]
- Van Echteld C. J., De Kruijff B., Mandersloot J. G., De Gier J. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies. Biochim Biophys Acta. 1981 Dec 7;649(2):211–220. doi: 10.1016/0005-2736(81)90408-9. [DOI] [PubMed] [Google Scholar]
- Wu W., Huang C., Conley T. G., Martin R. B., Levin I. W. Lamellar--micellar transition of 1-stearoyllysophosphatidylcholine assemblies in excess water. Biochemistry. 1982 Nov 9;21(23):5957–5961. doi: 10.1021/bi00266a035. [DOI] [PubMed] [Google Scholar]