Abstract
Gene transfer using replication-defective adenoviruses (RDAd) holds promise for the treatment of vascular proliferative disorders, but is potentially limited by the capacity of these viruses to infect multiple cell lineages. We have generated an RDAd vector, designated AdSM22-lacZ, which encodes the bacterial lacZ reporter gene under the transcriptional control of the smooth muscle cell (SMC)-specific SM22alpha promoter. Here, we show that in vitro AdSM22-lacZ programs expression of the lacZ reporter gene in primary rat aortic SMCs and immortalized A7r5 SMCs, but not in primary human umbilical vein endothelial cells (HUVECs) or NIH 3T3 cells. Consistent with these results, after intraarterial administration of AdSM22-lacZ to control and balloon-injured rat carotid arteries, beta-galactosidase activity was detected within SMCs of the tunica media and neointima, but not within endothelial or adventitial cells. Moreover, intravenous administration of AdSM22-lacZ did not result in lacZ gene expression in the liver or lungs. Finally, we have shown that direct injection of AdSM22-lacZ into SMC-containing tissues such as the ureter and bladder results in high-level transgene expression in visceral SMCs. Taken together, these results demonstrate that transgene expression after infection with an RDAd vector can be regulated in an SMC lineage-restricted fashion by using a transcriptional cassette containing the SMC-specific SM22alpha promoter. The demonstration of an efficient gene delivery system targeted specifically to SMCs provides a novel means to restrict expression of recombinant gene products to vascular or visceral SMCs in vivo.
Full Text
The Full Text of this article is available as a PDF (24.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arbuthnot P. B., Bralet M. P., Le Jossic C., Dedieu J. F., Perricaudet M., Bréchot C., Ferry N. In vitro and in vivo hepatoma cell-specific expression of a gene transferred with an adenoviral vector. Hum Gene Ther. 1996 Aug 20;7(13):1503–1514. doi: 10.1089/hum.1996.7.13-1503. [DOI] [PubMed] [Google Scholar]
- Barr E., Carroll J., Kalynych A. M., Tripathy S. K., Kozarsky K., Wilson J. M., Leiden J. M. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther. 1994 Jan;1(1):51–58. [PubMed] [Google Scholar]
- Bauters C. Gene therapy for cardiovascular diseases. Eur Heart J. 1995 Sep;16(9):1166–1168. doi: 10.1093/oxfordjournals.eurheartj.a061070. [DOI] [PubMed] [Google Scholar]
- Chang M. W., Barr E., Lu M. M., Barton K., Leiden J. M. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest. 1995 Nov;96(5):2260–2268. doi: 10.1172/JCI118281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang M. W., Barr E., Seltzer J., Jiang Y. Q., Nabel G. J., Nabel E. G., Parmacek M. S., Leiden J. M. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science. 1995 Jan 27;267(5197):518–522. doi: 10.1126/science.7824950. [DOI] [PubMed] [Google Scholar]
- Chang M. W., Ohno T., Gordon D., Lu M. M., Nabel G. J., Nabel E. G., Leiden J. M. Adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene inhibits vascular smooth muscle cell proliferation and neointima formation following balloon angioplasty of the rat carotid artery. Mol Med. 1995 Jan;1(2):172–181. [PMC free article] [PubMed] [Google Scholar]
- Duband J. L., Gimona M., Scatena M., Sartore S., Small J. V. Calponin and SM 22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development. Differentiation. 1993 Dec;55(1):1–11. doi: 10.1111/j.1432-0436.1993.tb00027.x. [DOI] [PubMed] [Google Scholar]
- Flugelman M. Y. Inhibition of intravascular thrombosis and vascular smooth muscle cell proliferation by gene therapy. Thromb Haemost. 1995 Jul;74(1):406–410. [PubMed] [Google Scholar]
- French B. A., Mazur W., Ali N. M., Geske R. S., Finnigan J. P., Rodgers G. P., Roberts R., Raizner A. E. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circulation. 1994 Nov;90(5):2402–2413. doi: 10.1161/01.cir.90.5.2402. [DOI] [PubMed] [Google Scholar]
- Guzman R. J., Hirschowitz E. A., Brody S. L., Crystal R. G., Epstein S. E., Finkel T. In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10732–10736. doi: 10.1073/pnas.91.22.10732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddada H., Cordier L., Perricaudet M. Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995;199(Pt 3):297–306. doi: 10.1007/978-3-642-79586-2_14. [DOI] [PubMed] [Google Scholar]
- James A. L., Paré P. D., Hogg J. C. The mechanics of airway narrowing in asthma. Am Rev Respir Dis. 1989 Jan;139(1):242–246. doi: 10.1164/ajrccm/139.1.242. [DOI] [PubMed] [Google Scholar]
- Johns D. C., Nuss H. B., Chiamvimonvat N., Ramza B. M., Marban E., Lawrence J. H. Adenovirus-mediated expression of a voltage-gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). A novel strategy for modifying excitability. J Clin Invest. 1995 Aug;96(2):1152–1158. doi: 10.1172/JCI118103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpinski B. A., Yang L. H., Cacheris P., Morle G. D., Leiden J. M. The first intron of the 4F2 heavy-chain gene contains a transcriptional enhancer element that binds multiple nuclear proteins. Mol Cell Biol. 1989 Jun;9(6):2588–2597. doi: 10.1128/mcb.9.6.2588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kashyap V. S., Santamarina-Fojo S., Brown D. R., Parrott C. L., Applebaum-Bowden D., Meyn S., Talley G., Paigen B., Maeda N., Brewer H. B., Jr Apolipoprotein E deficiency in mice: gene replacement and prevention of atherosclerosis using adenovirus vectors. J Clin Invest. 1995 Sep;96(3):1612–1620. doi: 10.1172/JCI118200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S., Ip H. S., Lu M. M., Clendenin C., Parmacek M. S. A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages. Mol Cell Biol. 1997 Apr;17(4):2266–2278. doi: 10.1128/mcb.17.4.2266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kito H., Suzuki T., Nagahara S., Nakayama Y., Tsutsui Y., Isutsui N., Nakajima N., Matsuda T. A total delivery system of genetically engineered drugs or cells for diseased vessels. Concept, materials, and fabricated prototype device. ASAIO J. 1994 Jul-Sep;40(3):M260–M266. doi: 10.1097/00002480-199407000-00005. [DOI] [PubMed] [Google Scholar]
- Krasnykh V. N., Mikheeva G. V., Douglas J. T., Curiel D. T. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol. 1996 Oct;70(10):6839–6846. doi: 10.1128/jvi.70.10.6839-6846.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Miano J. M., Cserjesi P., Olson E. N. SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res. 1996 Feb;78(2):188–195. doi: 10.1161/01.res.78.2.188. [DOI] [PubMed] [Google Scholar]
- Li L., Miano J. M., Mercer B., Olson E. N. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol. 1996 Mar;132(5):849–859. doi: 10.1083/jcb.132.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H., Parmacek M. S., Morle G., Bolling S., Leiden J. M. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 1990 Dec;82(6):2217–2221. doi: 10.1161/01.cir.82.6.2217. [DOI] [PubMed] [Google Scholar]
- March K. L., Madison J. E., Trapnell B. C. Pharmacokinetics of adenoviral vector-mediated gene delivery to vascular smooth muscle cells: modulation by poloxamer 407 and implications for cardiovascular gene therapy. Hum Gene Ther. 1995 Jan;6(1):41–53. doi: 10.1089/hum.1995.6.1-41. [DOI] [PubMed] [Google Scholar]
- Miller N., Vile R. Targeted vectors for gene therapy. FASEB J. 1995 Feb;9(2):190–199. doi: 10.1096/fasebj.9.2.7781922. [DOI] [PubMed] [Google Scholar]
- Moessler H., Mericskay M., Li Z., Nagl S., Paulin D., Small J. V. The SM 22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development. 1996 Aug;122(8):2415–2425. doi: 10.1242/dev.122.8.2415. [DOI] [PubMed] [Google Scholar]
- Morishita R., Gibbons G. H., Ellison K. E., Nakajima M., von der Leyen H., Zhang L., Kaneda Y., Ogihara T., Dzau V. J. Antisense oligonucleotides directed at cell cycle regulatory genes as strategy for restenosis therapy. Trans Assoc Am Physicians. 1993;106:54–61. [PubMed] [Google Scholar]
- Mühlhauser J., Merrill M. J., Pili R., Maeda H., Bacic M., Bewig B., Passaniti A., Edwards N. A., Crystal R. G., Capogrossi M. C. VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo. Circ Res. 1995 Dec;77(6):1077–1086. doi: 10.1161/01.res.77.6.1077. [DOI] [PubMed] [Google Scholar]
- Nabel E. G. Gene therapy for cardiovascular disease. Circulation. 1995 Jan 15;91(2):541–548. doi: 10.1161/01.cir.91.2.541. [DOI] [PubMed] [Google Scholar]
- Nabel E. G. Gene therapy for vascular diseases. Atherosclerosis. 1995 Dec;118 (Suppl):S51–S56. [PubMed] [Google Scholar]
- Nabel E. G., Shum L., Pompili V. J., Yang Z. Y., San H., Shu H. B., Liptay S., Gold L., Gordon D., Derynck R. Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10759–10763. doi: 10.1073/pnas.90.22.10759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nabel E. G., Yang Z. Y., Plautz G., Forough R., Zhan X., Haudenschild C. C., Maciag T., Nabel G. J. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature. 1993 Apr 29;362(6423):844–846. doi: 10.1038/362844a0. [DOI] [PubMed] [Google Scholar]
- Nabel E. G., Yang Z., Liptay S., San H., Gordon D., Haudenschild C. C., Nabel G. J. Recombinant platelet-derived growth factor B gene expression in porcine arteries induce intimal hyperplasia in vivo. J Clin Invest. 1993 Apr;91(4):1822–1829. doi: 10.1172/JCI116394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikol S., Huehns T. Y., Höfling B. Molecular biology and post-angioplasty restenosis. Atherosclerosis. 1996 Jun;123(1-2):17–31. doi: 10.1016/0021-9150(96)05807-8. [DOI] [PubMed] [Google Scholar]
- Ohno T., Gordon D., San H., Pompili V. J., Imperiale M. J., Nabel G. J., Nabel E. G. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science. 1994 Aug 5;265(5173):781–784. doi: 10.1126/science.8047883. [DOI] [PubMed] [Google Scholar]
- Owens G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995 Jul;75(3):487–517. doi: 10.1152/physrev.1995.75.3.487. [DOI] [PubMed] [Google Scholar]
- Parmacek M. S., Leiden J. M. Structure and expression of the murine slow/cardiac troponin C gene. J Biol Chem. 1989 Aug 5;264(22):13217–13225. [PubMed] [Google Scholar]
- Pompili V. J., Gordon D., San H., Yang Z., Muller D. W., Nabel G. J., Nabel E. G. Expression and function of a recombinant PDGF B gene in porcine arteries. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2254–2264. doi: 10.1161/01.atv.15.12.2254. [DOI] [PubMed] [Google Scholar]
- Rajasubramanian G., Meidell R. S., Landau C., Dollar M. L., Holt D. B., Willard J. E., Prager M. D., Eberhart R. C. Fabrication of resorbable microporous intravascular stents for gene therapy applications. ASAIO J. 1994 Jul-Sep;40(3):M584–M589. doi: 10.1097/00002480-199407000-00066. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Schwarzenberger P., Spence S. E., Gooya J. M., Michiel D., Curiel D. T., Ruscetti F. W., Keller J. R. Targeted gene transfer to human hematopoietic progenitor cell lines through the c-kit receptor. Blood. 1996 Jan 15;87(2):472–478. [PubMed] [Google Scholar]
- Simari R. D., San H., Rekhter M., Ohno T., Gordon D., Nabel G. J., Nabel E. G. Regulation of cellular proliferation and intimal formation following balloon injury in atherosclerotic rabbit arteries. J Clin Invest. 1996 Jul 1;98(1):225–235. doi: 10.1172/JCI118770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons M., Edelman E. R., DeKeyser J. L., Langer R., Rosenberg R. D. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature. 1992 Sep 3;359(6390):67–70. doi: 10.1038/359067a0. [DOI] [PubMed] [Google Scholar]
- Solway J., Seltzer J., Samaha F. F., Kim S., Alger L. E., Niu Q., Morrisey E. E., Ip H. S., Parmacek M. S. Structure and expression of a smooth muscle cell-specific gene, SM22 alpha. J Biol Chem. 1995 Jun 2;270(22):13460–13469. doi: 10.1074/jbc.270.22.13460. [DOI] [PubMed] [Google Scholar]
- Tripathy S. K., Goldwasser E., Lu M. M., Barr E., Leiden J. M. Stable delivery of physiologic levels of recombinant erythropoietin to the systemic circulation by intramuscular injection of replication-defective adenovirus. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11557–11561. doi: 10.1073/pnas.91.24.11557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z. Y., Simari R. D., Perkins N. D., San H., Gordon D., Nabel G. J., Nabel E. G. Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7905–7910. doi: 10.1073/pnas.93.15.7905. [DOI] [PMC free article] [PubMed] [Google Scholar]