Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1037–1046. doi: 10.1172/JCI119614

Bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by protein kinase C, and is enhanced by disruption of rho/cytoskeletal pathways.

R Seensalu 1, D Avedian 1, R Barbuti 1, M Song 1, L Slice 1, J H Walsh 1
PMCID: PMC508278  PMID: 9276720

Abstract

Isolated canine G cells in primary culture have been used to study calcium, protein kinase C (PKC), and rho/cytoskeletal-dependent intracellular pathways involved in bombesin- stimulated gastrin release. A method to obtain highly purified G cells by culture (64% G cells) after flow cytometry on elutriated fractions of cells from digested canine gastric antral mucosa has been developed. Pretreatment of G cells with thapsigargin (10(-8)-10(-6) M) and release experiments in Ca2+-containing or -depleted media showed that influx of Ca2+ into the cells and not acute release from intracellular stores plays an important role in bombesin-stimulated gastrin release. Inhibition of PKC by the specific inhibitor GF 109 203X did not affect bombesin-stimulated release. Rho, a small GTP-binding protein that regulates the actin cytoskeleton, is specifically antagonized by Clostridium botulinum C3 exoenzyme. C3 (10 microg/ml) enhanced basal and bombesin-stimulated gastrin release by 315 and 266%, respectively. The importance of the cytoskeleton for regulation of gastrin release was emphasized by a more pronounced release of gastrin when the organization of the actin cytoskeleton was disrupted by cytochalasin D (5 x 10(-)7 and 10(-)6 M). Wortmannin, a potent inhibitor of phosphoinositide-3-kinase, did not alter bombesin-stimulated gastrin release. Thus, it is concluded that bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by PKC, and is enhanced by disruption of rho/cytoskeletal pathways.

Full Text

The Full Text of this article is available as a PDF (360.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Braun U., Rösener S., Just I., Hall A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun. 1989 Jan 16;158(1):209–213. doi: 10.1016/s0006-291x(89)80199-8. [DOI] [PubMed] [Google Scholar]
  2. Amano M., Mukai H., Ono Y., Chihara K., Matsui T., Hamajima Y., Okawa K., Iwamatsu A., Kaibuchi K. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science. 1996 Feb 2;271(5249):648–650. doi: 10.1126/science.271.5249.648. [DOI] [PubMed] [Google Scholar]
  3. Brooks S. F., Herget T., Broad S., Rozengurt E. The expression of 80K/MARCKS, a major substrate of protein kinase C (PKC), is down-regulated through both PKC-dependent and -independent pathways. Effects of bombesin, platelet-derived growth factor, and cAMP. J Biol Chem. 1992 Jul 15;267(20):14212–14218. [PubMed] [Google Scholar]
  4. Buchan A. M. Effect of sympathomimetics on gastrin secretion from antral G cells in culture. J Clin Invest. 1991 Apr;87(4):1382–1386. doi: 10.1172/JCI115143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchan A. M., Meloche R. M. Signal transduction events involved in bombesin-stimulated gastrin release from human G cells in culture. Can J Physiol Pharmacol. 1994 Sep;72(9):1060–1065. doi: 10.1139/y94-148. [DOI] [PubMed] [Google Scholar]
  6. Buhl A. M., Johnson N. L., Dhanasekaran N., Johnson G. L. G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem. 1995 Oct 20;270(42):24631–24634. doi: 10.1074/jbc.270.42.24631. [DOI] [PubMed] [Google Scholar]
  7. Campos R. V., Buchan A. M., Meloche R. M., Pederson R. A., Kwok Y. N., Coy D. H. Gastrin secretion from human antral G cells in culture. Gastroenterology. 1990 Jul;99(1):36–44. doi: 10.1016/0016-5085(90)91226-v. [DOI] [PubMed] [Google Scholar]
  8. Deschryver-Kecskemeti K., Greider M. H., Rieders E., McGuigan J. E. Studies on gastrin secretion in vitro from cultures of rat pyloric antrum: effects of agents modifying the microtubular-microfilament system. Gastroenterology. 1980 Feb;78(2):339–345. [PubMed] [Google Scholar]
  9. Dillon S. T., Feig L. A. Purification and assay of recombinant C3 transferase. Methods Enzymol. 1995;256:174–184. doi: 10.1016/0076-6879(95)56022-x. [DOI] [PubMed] [Google Scholar]
  10. Eysselein V. E., Maxwell V., Reedy T., Wünsch E., Walsh J. H. Similar acid stimulatory potencies of synthetic human big and little gastrins in man. J Clin Invest. 1984 May;73(5):1284–1290. doi: 10.1172/JCI111330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giraud A. S., Soll A. H., Cuttitta F., Walsh J. H. Bombesin stimulation of gastrin release from canine gastrin cells in primary culture. Am J Physiol. 1987 Mar;252(3 Pt 1):G413–G420. doi: 10.1152/ajpgi.1987.252.3.G413. [DOI] [PubMed] [Google Scholar]
  12. Grady E. F., Slice L. W., Brant W. O., Walsh J. H., Payan D. G., Bunnett N. W. Direct observation of endocytosis of gastrin releasing peptide and its receptor. J Biol Chem. 1995 Mar 3;270(9):4603–4611. doi: 10.1074/jbc.270.9.4603. [DOI] [PubMed] [Google Scholar]
  13. Koop I., Squires P. E., Meloche R. M., Buchan A. M. Effect of cholinergic agonists on gastrin release from primary cultures of human antral G cells. Gastroenterology. 1997 Feb;112(2):357–363. doi: 10.1053/gast.1997.v112.pm9024289. [DOI] [PubMed] [Google Scholar]
  14. Malaisse W. J., Malaisse-Lagae F., Walker M. O., Lacy P. E. The stimulus-secretion coupling of glucose-induced insulin release. V. The participation of a microtubular-microfilamentous system. Diabetes. 1971 May;20(5):257–265. doi: 10.2337/diab.20.5.257. [DOI] [PubMed] [Google Scholar]
  15. Paterson H. F., Self A. J., Garrett M. D., Just I., Aktories K., Hall A. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol. 1990 Sep;111(3):1001–1007. doi: 10.1083/jcb.111.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pipeleers D. G., in't Veld P. A., Van de Winkel M., Maes E., Schuit F. C., Gepts W. A new in vitro model for the study of pancreatic A and B cells. Endocrinology. 1985 Sep;117(3):806–816. doi: 10.1210/endo-117-3-806. [DOI] [PubMed] [Google Scholar]
  17. Poisner A. M., Cooke P. Microtubules and the adrenal medulla. Ann N Y Acad Sci. 1975 Jun 30;253:653–669. doi: 10.1111/j.1749-6632.1975.tb19235.x. [DOI] [PubMed] [Google Scholar]
  18. Rankin S., Hooshmand-Rad R., Claesson-Welsh L., Rozengurt E. Requirement for phosphatidylinositol 3'-kinase activity in platelet-derived growth factor-stimulated tyrosine phosphorylation of p125 focal adhesion kinase and paxillin. J Biol Chem. 1996 Mar 29;271(13):7829–7834. doi: 10.1074/jbc.271.13.7829. [DOI] [PubMed] [Google Scholar]
  19. Rankin S., Morii N., Narumiya S., Rozengurt E. Botulinum C3 exoenzyme blocks the tyrosine phosphorylation of p125FAK and paxillin induced by bombesin and endothelin. FEBS Lett. 1994 Nov 14;354(3):315–319. doi: 10.1016/0014-5793(94)01148-6. [DOI] [PubMed] [Google Scholar]
  20. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  21. Rozengurt E. Bombesin-induction of cell proliferation in 3T3 cells. Specific receptors and early signaling events. Ann N Y Acad Sci. 1988;547:277–292. doi: 10.1111/j.1749-6632.1988.tb23896.x. [DOI] [PubMed] [Google Scholar]
  22. Schepp W., Chan C. B., Giraud A. S., Avedian D., Chen M. C., Chew P., Walsh J. H., Soll A. H. Effects of prostaglandins on gastrin release from canine antral mucosal cells in primary culture. Am J Physiol. 1994 Feb;266(2 Pt 1):G194–G200. doi: 10.1152/ajpgi.1994.266.2.G194. [DOI] [PubMed] [Google Scholar]
  23. Schepp W., Soll A. H., Walsh J. H. Dual modulation by adenosine of gastrin release from canine G-cells in primary culture. Am J Physiol. 1990 Oct;259(4 Pt 1):G556–G563. doi: 10.1152/ajpgi.1990.259.4.G556. [DOI] [PubMed] [Google Scholar]
  24. Seckl M. J., Morii N., Narumiya S., Rozengurt E. Guanosine 5'-3-O-(thio)triphosphate stimulates tyrosine phosphorylation of p125FAK and paxillin in permeabilized Swiss 3T3 cells. Role of p21rho. J Biol Chem. 1995 Mar 24;270(12):6984–6990. doi: 10.1074/jbc.270.12.6984. [DOI] [PubMed] [Google Scholar]
  25. Sekine A., Fujiwara M., Narumiya S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem. 1989 May 25;264(15):8602–8605. [PubMed] [Google Scholar]
  26. Sinnett-Smith J., Zachary I., Valverde A. M., Rozengurt E. Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. Role of protein kinase C, Ca2+ mobilization, and the actin cytoskeleton. J Biol Chem. 1993 Jul 5;268(19):14261–14268. [PubMed] [Google Scholar]
  27. Smith C. J., Sridaran R. Time-dependent biphasic effect of cytochalasin D on luteal progesterone release in the pregnant rat. Life Sci. 1991;48(12):1217–1225. doi: 10.1016/0024-3205(91)90461-j. [DOI] [PubMed] [Google Scholar]
  28. Sugano K., Park J., Soll A. H., Yamada T. Stimulation of gastrin release by bombesin and canine gastrin-releasing peptides. Studies with isolated canine G cells in primary culture. J Clin Invest. 1987 Mar;79(3):935–942. doi: 10.1172/JCI112904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
  30. Thastrup O., Dawson A. P., Scharff O., Foder B., Cullen P. J., Drøbak B. K., Bjerrum P. J., Christensen S. B., Hanley M. R. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions. 1989 Apr;27(1-2):17–23. doi: 10.1007/BF02222186. [DOI] [PubMed] [Google Scholar]
  31. Thastrup O., Linnebjerg H., Bjerrum P. J., Knudsen J. B., Christensen S. B. The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations. Biochim Biophys Acta. 1987 Jan 19;927(1):65–73. doi: 10.1016/0167-4889(87)90066-8. [DOI] [PubMed] [Google Scholar]
  32. Thorner M. O., Borges J. L., Cronin M. J., Keefer D. A., Hellmann P., Lewis D., Dabney L. G., Quesenberry P. J. Fluorescence activated cell sorting of functional anterior pituitary cells. Endocrinology. 1982 May;110(5):1831–1833. doi: 10.1210/endo-110-5-1831. [DOI] [PubMed] [Google Scholar]
  33. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  34. Ui M., Okada T., Hazeki K., Hazeki O. Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem Sci. 1995 Aug;20(8):303–307. doi: 10.1016/s0968-0004(00)89056-8. [DOI] [PubMed] [Google Scholar]
  35. Vigna S. R., Giraud A. S., Mantyh P. W., Soll A. H., Walsh J. H. Characterization of bombesin receptors on canine antral gastrin cells. Peptides. 1990 Mar-Apr;11(2):259–264. doi: 10.1016/0196-9781(90)90079-k. [DOI] [PubMed] [Google Scholar]
  36. Walsh J. H., Bouzyk M., Rozengurt E. Homologous desensitization of bombesin-induced increases in intracellular Ca2+ in quiescent Swiss 3T3 cells involves a protein kinase C-independent mechanism. J Cell Physiol. 1993 Aug;156(2):333–340. doi: 10.1002/jcp.1041560216. [DOI] [PubMed] [Google Scholar]
  37. Watanabe G., Saito Y., Madaule P., Ishizaki T., Fujisawa K., Morii N., Mukai H., Ono Y., Kakizuka A., Narumiya S. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science. 1996 Feb 2;271(5249):645–648. doi: 10.1126/science.271.5249.645. [DOI] [PubMed] [Google Scholar]
  38. Wynick D., Critchley R., Venetikou M. S., Burrin J. M., Bloom S. R. Purification of functional lactotrophs and somatotrophs from female rats using fluorescence-activated cell sorting. J Endocrinol. 1990 Aug;126(2):269–274. doi: 10.1677/joe.0.1260269. [DOI] [PubMed] [Google Scholar]
  39. Zachary I., Sinnett-Smith J., Turner C. E., Rozengurt E. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J Biol Chem. 1993 Oct 15;268(29):22060–22065. [PubMed] [Google Scholar]
  40. Zeng N., Walsh J. H., Kang T., Helander K. G., Helander H. F., Sachs G. Selective ligand-induced intracellular calcium changes in a population of rat isolated gastric endocrine cells. Gastroenterology. 1996 Jun;110(6):1835–1846. doi: 10.1053/gast.1996.v110.pm8964409. [DOI] [PubMed] [Google Scholar]
  41. Zhang J., Zhang J., Benovic J. L., Sugai M., Wetzker R., Gout I., Rittenhouse S. E. Sequestration of a G-protein beta gamma subunit or ADP-ribosylation of Rho can inhibit thrombin-induced activation of platelet phosphoinositide 3-kinases. J Biol Chem. 1995 Mar 24;270(12):6589–6594. doi: 10.1074/jbc.270.12.6589. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES