Abstract
A novel polymorphism in the extracellular domain 2 (EC2) of FcgammaRIIIA affects ligand binding by natural killer (NK) cells and monocytes from genotyped homozygous normal donors independently of receptor expression. The nonconservative T to G substitution at nucleotide 559 predicts a change of phenylalanine (F) to valine (V) at amino acid position 176. Compared with F/F homozygotes, FcgammaRIIIa expressed on NK cells and monocytes in V/V homozygotes bound more IgG1 and IgG3 despite identical levels of receptor expression. In response to a standard aggregated human IgG stimulus, FcgammaRIIIa engagement on NK cells from V/V (high-binding) homozygotes led to a larger rise in [Ca2+]i, a greater level of NK cell activation, and a more rapid induction of activation-induced cell death (by apoptosis). Investigation of an independently phenotyped normal cohort revealed that all donors with a low binding phenotype are F/F homozygotes, while all phenotypic high binding donors have at least one V allele. Initial analysis of 200 patients with SLE indicates a strong association of the low binding phenotype with disease, especially in patients with nephritis who have an underrepresentation of the homozygous high binding phenotype. Thus, the FcgammaRIIIa polymorphism at residue 176 appears to impact directly on human biology, an effect which may extend beyond autoimmune disease characterized by immune complexes to host defense mechanisms.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azzoni L., Anegon I., Calabretta B., Perussia B. Ligand binding to Fc gamma R induces c-myc-dependent apoptosis in IL-2-stimulated NK cells. J Immunol. 1995 Jan 15;154(2):491–499. [PubMed] [Google Scholar]
- Botto M., Theodoridis E., Thompson E. M., Beynon H. L., Briggs D., Isenberg D. A., Walport M. J., Davies K. A. Fc gamma RIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin Exp Immunol. 1996 May;104(2):264–268. doi: 10.1046/j.1365-2249.1996.33740.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bredius R. G., Derkx B. H., Fijen C. A., de Wit T. P., de Haas M., Weening R. S., van de Winkel J. G., Out T. A. Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J Infect Dis. 1994 Oct;170(4):848–853. doi: 10.1093/infdis/170.4.848. [DOI] [PubMed] [Google Scholar]
- Bredius R. G., Fijen C. A., De Haas M., Kuijper E. J., Weening R. S., Van de Winkel J. G., Out T. A. Role of neutrophil Fc gamma RIIa (CD32) and Fc gamma RIIIb (CD16) polymorphic forms in phagocytosis of human IgG1- and IgG3-opsonized bacteria and erythrocytes. Immunology. 1994 Dec;83(4):624–630. [PMC free article] [PubMed] [Google Scholar]
- Clark M. R., Clarkson S. B., Ory P. A., Stollman N., Goldstein I. M. Molecular basis for a polymorphism involving Fc receptor II on human monocytes. J Immunol. 1989 Sep 1;143(5):1731–1734. [PubMed] [Google Scholar]
- Clark M. R., Stuart S. G., Kimberly R. P., Ory P. A., Goldstein I. M. A single amino acid distinguishes the high-responder from the low-responder form of Fc receptor II on human monocytes. Eur J Immunol. 1991 Aug;21(8):1911–1916. doi: 10.1002/eji.1830210820. [DOI] [PubMed] [Google Scholar]
- Clarkson S. B., Kimberly R. P., Valinsky J. E., Witmer M. D., Bussel J. B., Nachman R. L., Unkeless J. C. Blockade of clearance of immune complexes by an anti-Fc gamma receptor monoclonal antibody. J Exp Med. 1986 Aug 1;164(2):474–489. doi: 10.1084/jem.164.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duits A. J., Bootsma H., Derksen R. H., Spronk P. E., Kater L., Kallenberg C. G., Capel P. J., Westerdaal N. A., Spierenburg G. T., Gmelig-Meyling F. H. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum. 1995 Dec;38(12):1832–1836. doi: 10.1002/art.1780381217. [DOI] [PubMed] [Google Scholar]
- Edberg J. C., Kimberly R. P. Receptor specific probes for the study of Fc gamma receptor specific function. J Immunol Methods. 1992 Apr 8;148(1-2):179–187. doi: 10.1016/0022-1759(92)90171-o. [DOI] [PubMed] [Google Scholar]
- Eischen C. M., Schilling J. D., Lynch D. H., Krammer P. H., Leibson P. J. Fc receptor-induced expression of Fas ligand on activated NK cells facilitates cell-mediated cytotoxicity and subsequent autocrine NK cell apoptosis. J Immunol. 1996 Apr 15;156(8):2693–2699. [PubMed] [Google Scholar]
- Fijen C. A., Bredius R. G., Kuijper E. J. Polymorphism of IgG Fc receptors in meningococcal disease. Ann Intern Med. 1993 Oct 1;119(7 Pt 1):636–636. doi: 10.7326/0003-4819-119-7_part_1-199310010-00026. [DOI] [PubMed] [Google Scholar]
- Fleit H. B., Kobasiuk C. D., Daly C., Furie R., Levy P. C., Webster R. O. A soluble form of Fc gamma RIII is present in human serum and other body fluids and is elevated at sites of inflammation. Blood. 1992 May 15;79(10):2721–2728. [PubMed] [Google Scholar]
- Fleit H. B., Kobasiuk C. D., Peress N. S., Fleit S. A. A common epitope is recognized by monoclonal antibodies prepared against purified human neutrophil Fc gamma RIII (CD16). Clin Immunol Immunopathol. 1992 Jan;62(1 Pt 1):16–24. doi: 10.1016/0090-1229(92)90018-j. [DOI] [PubMed] [Google Scholar]
- Gismondi A., Mainiero F., Morrone S., Palmieri G., Piccoli M., Frati L., Santoni A. Triggering through CD16 or phorbol esters enhances adhesion of NK cells to laminin via very late antigen 6. J Exp Med. 1992 Nov 1;176(5):1251–1257. doi: 10.1084/jem.176.5.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Harris D. T., Travis W. W., Koren H. S. Induction of activation antigens on human natural killer cells mediated through the Fc-gamma receptor. J Immunol. 1989 Oct 1;143(7):2401–2406. [PubMed] [Google Scholar]
- Harrison D., Phillips J. H., Lanier L. L. Involvement of a metalloprotease in spontaneous and phorbol ester-induced release of natural killer cell-associated Fc gamma RIII (CD16-II). J Immunol. 1991 Nov 15;147(10):3459–3465. [PubMed] [Google Scholar]
- Hazenbos W. L., Gessner J. E., Hofhuis F. M., Kuipers H., Meyer D., Heijnen I. A., Schmidt R. E., Sandor M., Capel P. J., Daëron M. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity. 1996 Aug;5(2):181–188. doi: 10.1016/s1074-7613(00)80494-x. [DOI] [PubMed] [Google Scholar]
- Hibbs M. L., Tolvanen M., Carpén O. Membrane-proximal Ig-like domain of Fc gamma RIII (CD16) contains residues critical for ligand binding. J Immunol. 1994 May 1;152(9):4466–4474. [PubMed] [Google Scholar]
- Hoover R. G., Lary C., Page R., Travis P., Owens R., Flick J., Kornbluth J., Barlogie B. Autoregulatory circuits in myeloma. Tumor cell cytotoxicity mediated by soluble CD16. J Clin Invest. 1995 Jan;95(1):241–247. doi: 10.1172/JCI117646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huizinga T. W., Kleijer M., Tetteroo P. A., Roos D., von dem Borne A. E. Biallelic neutrophil Na-antigen system is associated with a polymorphism on the phospho-inositol-linked Fc gamma receptor III (CD16). Blood. 1990 Jan 1;75(1):213–217. [PubMed] [Google Scholar]
- Hulett M. D., Hogarth P. M. Molecular basis of Fc receptor function. Adv Immunol. 1994;57:1–127. doi: 10.1016/s0065-2776(08)60671-9. [DOI] [PubMed] [Google Scholar]
- Hulett M. D., Witort E., Brinkworth R. I., McKenzie I. F., Hogarth P. M. Multiple regions of human Fc gamma RII (CD32) contribute to the binding of IgG. J Biol Chem. 1995 Sep 8;270(36):21188–21194. doi: 10.1074/jbc.270.36.21188. [DOI] [PubMed] [Google Scholar]
- Jawahar S., Moody C., Chan M., Finberg R., Geha R., Chatila T. Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol. 1996 Mar;103(3):408–413. doi: 10.1111/j.1365-2249.1996.tb08295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimberly R. P., Ahlstrom J. W., Click M. E., Edberg J. C. The glycosyl phosphatidylinositol-linked Fc gamma RIIIPMN mediates transmembrane signaling events distinct from Fc gamma RII. J Exp Med. 1990 Apr 1;171(4):1239–1255. doi: 10.1084/jem.171.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimberly R. P., Edberg J. C., Merriam L. T., Clarkson S. B., Unkeless J. C., Taylor R. P. In vivo handling of soluble complement fixing Ab/dsDNA immune complexes in chimpanzees. J Clin Invest. 1989 Sep;84(3):962–970. doi: 10.1172/JCI114259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimberly R. P., Salmon J. E., Edberg J. C. Receptors for immunoglobulin G. Molecular diversity and implications for disease. Arthritis Rheum. 1995 Mar;38(3):306–314. doi: 10.1002/art.1780380303. [DOI] [PubMed] [Google Scholar]
- Luan J. J., Monteiro R. C., Sautès C., Fluteau G., Eloy L., Fridman W. H., Bach J. F., Garchon H. J. Defective Fc gamma RII gene expression in macrophages of NOD mice: genetic linkage with up-regulation of IgG1 and IgG2b in serum. J Immunol. 1996 Nov 15;157(10):4707–4716. [PubMed] [Google Scholar]
- Odin J. A., Edberg J. C., Painter C. J., Kimberly R. P., Unkeless J. C. Regulation of phagocytosis and [Ca2+]i flux by distinct regions of an Fc receptor. Science. 1991 Dec 20;254(5039):1785–1788. doi: 10.1126/science.1837175. [DOI] [PubMed] [Google Scholar]
- Ortaldo J. R., Mason A. T., O'Shea J. J. Receptor-induced death in human natural killer cells: involvement of CD16. J Exp Med. 1995 Jan 1;181(1):339–344. doi: 10.1084/jem.181.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ory P. A., Clark M. R., Kwoh E. E., Clarkson S. B., Goldstein I. M. Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils. J Clin Invest. 1989 Nov;84(5):1688–1691. doi: 10.1172/JCI114350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parren P. W., Warmerdam P. A., Boeije L. C., Arts J., Westerdaal N. A., Vlug A., Capel P. J., Aarden L. A., van de Winkel J. G. On the interaction of IgG subclasses with the low affinity Fc gamma RIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J Clin Invest. 1992 Oct;90(4):1537–1546. doi: 10.1172/JCI116022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peltz G. A., Grundy H. O., Lebo R. V., Yssel H., Barsh G. S., Moore K. W. Human Fc gamma RIII: cloning, expression, and identification of the chromosomal locus of two Fc receptors for IgG. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1013–1017. doi: 10.1073/pnas.86.3.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983 May;130(5):2133–2141. [PubMed] [Google Scholar]
- Radeke H. H., Gessner J. E., Uciechowski P., Mägert H. J., Schmidt R. E., Resch K. Intrinsic human glomerular mesangial cells can express receptors for IgG complexes (hFc gamma RIII-A) and the associated Fc epsilon RI gamma-chain. J Immunol. 1994 Aug 1;153(3):1281–1292. [PubMed] [Google Scholar]
- Ravetch J. V., Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989 Aug 1;170(2):481–497. doi: 10.1084/jem.170.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon J. E., Edberg J. C., Brogle N. L., Kimberly R. P. Allelic polymorphisms of human Fc gamma receptor IIA and Fc gamma receptor IIIB. Independent mechanisms for differences in human phagocyte function. J Clin Invest. 1992 Apr;89(4):1274–1281. doi: 10.1172/JCI115712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon J. E., Edberg J. C., Kimberly R. P. Fc gamma receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J Clin Invest. 1990 Apr;85(4):1287–1295. doi: 10.1172/JCI114566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon J. E., Millard S. S., Brogle N. L., Kimberly R. P. Fc gamma receptor IIIb enhances Fc gamma receptor IIa function in an oxidant-dependent and allele-sensitive manner. J Clin Invest. 1995 Jun;95(6):2877–2885. doi: 10.1172/JCI117994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon J. E., Millard S., Schachter L. A., Arnett F. C., Ginzler E. M., Gourley M. F., Ramsey-Goldman R., Peterson M. G., Kimberly R. P. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest. 1996 Mar 1;97(5):1348–1354. doi: 10.1172/JCI118552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders L. A., van de Winkel J. G., Rijkers G. T., Voorhorst-Ogink M. M., de Haas M., Capel P. J., Zegers B. J. Fc gamma receptor IIa (CD32) heterogeneity in patients with recurrent bacterial respiratory tract infections. J Infect Dis. 1994 Oct;170(4):854–861. doi: 10.1093/infdis/170.4.854. [DOI] [PubMed] [Google Scholar]
- Scallon B. J., Scigliano E., Freedman V. H., Miedel M. C., Pan Y. C., Unkeless J. C., Kochan J. P. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5079–5083. doi: 10.1073/pnas.86.13.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takai T., Ono M., Hikida M., Ohmori H., Ravetch J. V. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature. 1996 Jan 25;379(6563):346–349. doi: 10.1038/379346a0. [DOI] [PubMed] [Google Scholar]
- Tamm A., Kister A., Nolte K. U., Gessner J. E., Schmidt R. E. The IgG binding site of human FcgammaRIIIB receptor involves CC' and FG loops of the membrane-proximal domain. J Biol Chem. 1996 Feb 16;271(7):3659–3666. doi: 10.1074/jbc.271.7.3659. [DOI] [PubMed] [Google Scholar]
- Tamm A., Schmidt R. E. The binding epitopes of human CD16 (Fc gamma RIII) monoclonal antibodies. Implications for ligand binding. J Immunol. 1996 Aug 15;157(4):1576–1581. [PubMed] [Google Scholar]
- Tan E. M., Cohen A. S., Fries J. F., Masi A. T., McShane D. J., Rothfield N. F., Schaller J. G., Talal N., Winchester R. J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982 Nov;25(11):1271–1277. doi: 10.1002/art.1780251101. [DOI] [PubMed] [Google Scholar]
- Tate B. J., Witort E., McKenzie I. F., Hogarth P. M. Expression of the high responder/non-responder human Fc gamma RII. Analysis by PCR and transfection into FcR-COS cells. Immunol Cell Biol. 1992 Apr;70(Pt 2):79–87. doi: 10.1038/icb.1992.12. [DOI] [PubMed] [Google Scholar]
- Teillaud C., Galon J., Zilber M. T., Mazières N., Spagnoli R., Kurrle R., Fridman W. H., Sautès C. Soluble CD16 binds peripheral blood mononuclear cells and inhibits pokeweed-mitogen-induced responses. Blood. 1993 Nov 15;82(10):3081–3090. [PubMed] [Google Scholar]
- Trounstine M. L., Peltz G. A., Yssel H., Huizinga T. W., von dem Borne A. E., Spits H., Moore K. W. Reactivity of cloned, expressed human Fc gamma RIII isoforms with monoclonal antibodies which distinguish cell-type-specific and allelic forms of Fc gamma RIII. Int Immunol. 1990;2(4):303–310. doi: 10.1093/intimm/2.4.303. [DOI] [PubMed] [Google Scholar]
- Tsao B. P., Cantor R. M., Kalunian K. C., Chen C. J., Badsha H., Singh R., Wallace D. J., Kitridou R. C., Chen S. L., Shen N. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest. 1997 Feb 15;99(4):725–731. doi: 10.1172/JCI119217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vance B. A., Huizinga T. W., Wardwell K., Guyre P. M. Binding of monomeric human IgG defines an expression polymorphism of Fc gamma RIII on large granular lymphocyte/natural killer cells. J Immunol. 1993 Dec 1;151(11):6429–6439. [PubMed] [Google Scholar]
- Warmerdam P. A., van de Winkel J. G., Gosselin E. J., Capel P. J. Molecular basis for a polymorphism of human Fc gamma receptor II (CD32). J Exp Med. 1990 Jul 1;172(1):19–25. doi: 10.1084/jem.172.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wing M. G., Moreau T., Greenwood J., Smith R. M., Hale G., Isaacs J., Waldmann H., Lachmann P. J., Compston A. Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells. J Clin Invest. 1996 Dec 15;98(12):2819–2826. doi: 10.1172/JCI119110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Haas M., Kleijer M., Minchinton R. M., Roos D., von dem Borne A. E. Soluble Fc gamma RIIIa is present in plasma and is derived from natural killer cells. J Immunol. 1994 Jan 15;152(2):900–907. [PubMed] [Google Scholar]