Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1071–1078. doi: 10.1172/JCI119617

Developmental changes in water permeability across the alveolar barrier in perinatal rabbit lung.

E P Carter 1, F Umenishi 1, M A Matthay 1, A S Verkman 1
PMCID: PMC508281  PMID: 9276723

Abstract

Lung fluid is reabsorbed rapidly at birth to permit alveolar respiration. We reported previously that expression of aquaporins (AQP) 1, 4, and 5 in rat lung increased just after birth. The hypothesis was tested that the increased AQP expression is associated with increased osmotic water permeability (Pf) between the airspace and capillary compartments. Pf was measured in isolated perfused fetal and newborn rabbit lungs using a pleural surface fluorescence method (Carter, E.P., M.A. Matthay, J. Farinas, and A.S. Verkman. 1996. J. Gen. Physiol. 108:133-142). In response to perfusate osmolality increase from 300 to 600 mosM, initial rates of osmotic equilibration were 1.13+/-0.13 mosM/s at 0-12 h after birth, increasing to 1.52+/-0.19 mosM/s at 12-24 h, and 1.83+/-0.10 mosM/s at 24-84 h. Corresponding Pf values (in cm/s x 10(-2)), computed from d[mosM]/dt and alveolar surface-to-volume ratios, were 1.03+/-0.11 (0-12 h), 1.51+/-0.16 (12-24 h), and 1.88+/-0.09 (24-84 h). Pf was relatively low in prenatal (1.22-1.27, fetal days 29 and 31) and adolescent (1.25+/-0.08, 21-d) rabbit lungs. To test for involvement of molecular water channels, measurements were made of Arrhenius activation energy (Ea), mercurial inhibition, diffusional water permeability (Pd), and AQP expression. Temperature-dependence measurements showed a 25% decrease in Ea for Pf in lungs < 1 d vs. 4 d. Pf was decreased 30% by 0.5 mM HgCl2 in < 1-d lungs and 44% in 4-d lungs. Pd was 1.0 x 10(-)5 cm/s and did not change when Pf was increased by 75%. RNase protection assay showed increased transcript expression in the first 24 h after birth for rabbit isoforms of AQP1 and AQP4. These results provide the first functional data on water permeability in perinatal lung. The increased water permeability after birth may facilitate the maintenance of dry alveoli.

Full Text

The Full Text of this article is available as a PDF (309.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams F. H., Yanagisawa M., Kuzela D., Martinek H. The disappearance of fetal lung fluid following birth. J Pediatr. 1971 May;78(5):837–843. doi: 10.1016/s0022-3476(71)80356-6. [DOI] [PubMed] [Google Scholar]
  2. Adamson T. M., Boyd R. D., Platt H. S., Strang L. B. Composition of alveolar liquid in the foetal lamb. J Physiol. 1969 Sep;204(1):159–168. doi: 10.1113/jphysiol.1969.sp008905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alcorn D., Adamson T. M., Lambert T. F., Maloney J. E., Ritchie B. C., Robinson P. M. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat. 1977 Jul;123(Pt 3):649–660. [PMC free article] [PubMed] [Google Scholar]
  4. Barker P. M., Gatzy J. T. Effect of gas composition on liquid secretion by explants of distal lung of fetal rat in submersion culture. Am J Physiol. 1993 Nov;265(5 Pt 1):L512–L517. doi: 10.1152/ajplung.1993.265.5.L512. [DOI] [PubMed] [Google Scholar]
  5. Basset G., Crone C., Saumon G. Fluid absorption by rat lung in situ: pathways for sodium entry in the luminal membrane of alveolar epithelium. J Physiol. 1987 Mar;384:325–345. doi: 10.1113/jphysiol.1987.sp016457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bland R. D., Boyd C. A. Cation transport in lung epithelial cells derived from fetal, newborn, and adult rabbits. J Appl Physiol (1985) 1986 Aug;61(2):507–515. doi: 10.1152/jappl.1986.61.2.507. [DOI] [PubMed] [Google Scholar]
  7. Bland R. D., Bressack M. A., McMillan D. D. Labor decreases the lung water content of newborn rabbits. Am J Obstet Gynecol. 1979 Oct 1;135(3):364–367. doi: 10.1016/0002-9378(79)90706-3. [DOI] [PubMed] [Google Scholar]
  8. Bland R. D. Lung epithelial ion transport and fluid movement during the perinatal period. Am J Physiol. 1990 Aug;259(2 Pt 1):L30–L37. doi: 10.1152/ajplung.1990.259.2.L30. [DOI] [PubMed] [Google Scholar]
  9. Bland R. D., McMillan D. D., Bressack M. A., Dong L. Clearance of liquid from lungs of newborn rabbits. J Appl Physiol Respir Environ Exerc Physiol. 1980 Aug;49(2):171–177. doi: 10.1152/jappl.1980.49.2.171. [DOI] [PubMed] [Google Scholar]
  10. Carter E. P., Matthay M. A., Farinas J., Verkman A. S. Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method. J Gen Physiol. 1996 Sep;108(3):133–142. doi: 10.1085/jgp.108.3.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cassin S., Gause G., Perks A. M. The effects of bumetanide and furosemide on lung liquid secretion in fetal sheep. Proc Soc Exp Biol Med. 1986 Mar;181(3):427–431. doi: 10.3181/00379727-181-42276. [DOI] [PubMed] [Google Scholar]
  12. Chapman D. L., Widdicombe J. H., Bland R. D. Developmental differences in rabbit lung epithelial cell Na(+)-K(+)-ATPase. Am J Physiol. 1990 Dec;259(6 Pt 1):L481–L487. doi: 10.1152/ajplung.1990.259.6.L481. [DOI] [PubMed] [Google Scholar]
  13. Deen P. M., Verdijk M. A., Knoers N. V., Wieringa B., Monnens L. A., van Os C. H., van Oost B. A. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994 Apr 1;264(5155):92–95. doi: 10.1126/science.8140421. [DOI] [PubMed] [Google Scholar]
  14. Dickson K. A., Harding R. Decline in lung liquid volume and secretion rate during oligohydramnios in fetal sheep. J Appl Physiol (1985) 1989 Dec;67(6):2401–2407. doi: 10.1152/jappl.1989.67.6.2401. [DOI] [PubMed] [Google Scholar]
  15. Dickson K. A., Maloney J. E., Berger P. J. Decline in lung liquid volume before labor in fetal lambs. J Appl Physiol (1985) 1986 Dec;61(6):2266–2272. doi: 10.1152/jappl.1986.61.6.2266. [DOI] [PubMed] [Google Scholar]
  16. Farinas J., Simanek V., Verkman A. S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys J. 1995 Apr;68(4):1613–1620. doi: 10.1016/S0006-3495(95)80335-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Folkesson H. G., Matthay M. A., Frigeri A., Verkman A. S. Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport. J Clin Invest. 1996 Feb 1;97(3):664–671. doi: 10.1172/JCI118463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Folkesson H. G., Matthay M. A., Hasegawa H., Kheradmand F., Verkman A. S. Transcellular water transport in lung alveolar epithelium through mercury-sensitive water channels. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4970–4974. doi: 10.1073/pnas.91.11.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Frigeri A., Gropper M. A., Turck C. W., Verkman A. S. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4328–4331. doi: 10.1073/pnas.92.10.4328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Frigeri A., Gropper M. A., Umenishi F., Kawashima M., Brown D., Verkman A. S. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. 1995 Sep;108(Pt 9):2993–3002. doi: 10.1242/jcs.108.9.2993. [DOI] [PubMed] [Google Scholar]
  21. Hasegawa H., Lian S. C., Finkbeiner W. E., Verkman A. S. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol. 1994 Apr;266(4 Pt 1):C893–C903. doi: 10.1152/ajpcell.1994.266.4.C893. [DOI] [PubMed] [Google Scholar]
  22. Hummler E., Barker P., Gatzy J., Beermann F., Verdumo C., Schmidt A., Boucher R., Rossier B. C. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996 Mar;12(3):325–328. doi: 10.1038/ng0396-325. [DOI] [PubMed] [Google Scholar]
  23. Humphreys P. W., Normand I. C., Reynolds E. O., Strang L. B. Pulmonary lymph flow and the uptake of liquid from the lungs of the lamb at the start of breathing. J Physiol. 1967 Nov;193(1):1–29. doi: 10.1113/jphysiol.1967.sp008340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ingbar D. H., Weeks C. B., Gilmore-Hebert M., Jacobsen E., Duvick S., Dowin R., Savik S. K., Jamieson J. D. Developmental regulation of Na, K-ATPase in rat lung. Am J Physiol. 1996 Apr;270(4 Pt 1):L619–L629. doi: 10.1152/ajplung.1996.270.4.L619. [DOI] [PubMed] [Google Scholar]
  25. King L. S., Nielsen S., Agre P. Aquaporin-1 water channel protein in lung: ontogeny, steroid-induced expression, and distribution in rat. J Clin Invest. 1996 May 15;97(10):2183–2191. doi: 10.1172/JCI118659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kitterman J. A., Ballard P. L., Clements J. A., Mescher E. J., Tooley W. H. Tracheal fluid in fetal lambs: spontaneous decrease prior to birth. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):985–989. doi: 10.1152/jappl.1979.47.5.985. [DOI] [PubMed] [Google Scholar]
  27. Knepper M. A. The aquaporin family of molecular water channels. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6255–6258. doi: 10.1073/pnas.91.14.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Krochmal E. M., Ballard S. T., Yankaskas J. R., Boucher R. C., Gatzy J. T. Volume and ion transport by fetal rat alveolar and tracheal epithelia in submersion culture. Am J Physiol. 1989 Mar;256(3 Pt 2):F397–F407. doi: 10.1152/ajprenal.1989.256.3.F397. [DOI] [PubMed] [Google Scholar]
  29. Kuwahara M., Verkman A. S. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule. Biophys J. 1988 Oct;54(4):587–593. doi: 10.1016/S0006-3495(88)82993-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ma T., Yang B., Gillespie A., Carlson E. J., Epstein C. J., Verkman A. S. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest. 1997 Sep 1;100(5):957–962. doi: 10.1172/JCI231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matthay M. A., Folkesson H. G., Verkman A. S. Salt and water transport across alveolar and distal airway epithelia in the adult lung. Am J Physiol. 1996 Apr;270(4 Pt 1):L487–L503. doi: 10.1152/ajplung.1996.270.4.L487. [DOI] [PubMed] [Google Scholar]
  32. Matthay M. A., Landolt C. C., Staub N. C. Differential liquid and protein clearance from the alveoli of anesthetized sheep. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):96–104. doi: 10.1152/jappl.1982.53.1.96. [DOI] [PubMed] [Google Scholar]
  33. McCray P. B., Jr, Reenstra W. W., Louie E., Johnson J., Bettencourt J. D., Bastacky J. Expression of CFTR and presence of cAMP-mediated fluid secretion in human fetal lung. Am J Physiol. 1992 Apr;262(4 Pt 1):L472–L481. doi: 10.1152/ajplung.1992.262.4.L472. [DOI] [PubMed] [Google Scholar]
  34. McGrath S. A., Basu A., Zeitlin P. L. Cystic fibrosis gene and protein expression during fetal lung development. Am J Respir Cell Mol Biol. 1993 Feb;8(2):201–208. doi: 10.1165/ajrcmb/8.2.201. [DOI] [PubMed] [Google Scholar]
  35. Murray C. B., Morales M. M., Flotte T. R., McGrath-Morrow S. A., Guggino W. B., Zeitlin P. L. CIC-2: a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol. 1995 Jun;12(6):597–604. doi: 10.1165/ajrcmb.12.6.7766424. [DOI] [PubMed] [Google Scholar]
  36. Nielsen S., Smith B. L., Christensen E. I., Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7275–7279. doi: 10.1073/pnas.90.15.7275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Normand I. C., Olver R. E., Reynolds E. O., Strang L. B. Permeability of lung capillaries and alveoli to non-electrolytes in the foetal lamb. J Physiol. 1971 Dec;219(2):303–330. doi: 10.1113/jphysiol.1971.sp009663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Normand I. C., Reynolds E. O., Strang L. B. Passage of macromolecules between alveolar and interstitial spaces in foetal and newly ventilated lungs of the lamb. J Physiol. 1970 Sep;210(1):151–164. doi: 10.1113/jphysiol.1970.sp009201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. O'Brodovich H. Epithelial ion transport in the fetal and perinatal lung. Am J Physiol. 1991 Oct;261(4 Pt 1):C555–C564. doi: 10.1152/ajpcell.1991.261.4.C555. [DOI] [PubMed] [Google Scholar]
  40. O'Brodovich H., Hannam V., Seear M., Mullen J. B. Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol (1985) 1990 Apr;68(4):1758–1762. doi: 10.1152/jappl.1990.68.4.1758. [DOI] [PubMed] [Google Scholar]
  41. O'Brodovich H., Staub O., Rossier B. C., Geering K., Kraehenbuhl J. P. Ontogeny of alpha 1- and beta 1-isoforms of Na(+)-K(+)-ATPase in fetal distal rat lung epithelium. Am J Physiol. 1993 May;264(5 Pt 1):C1137–C1143. doi: 10.1152/ajpcell.1993.264.5.C1137. [DOI] [PubMed] [Google Scholar]
  42. Olver R. E., Schneeberger E. E., Walters D. V. Epithelial solute permeability, ion transport and tight junction morphology in the developing lung of the fetal lamb. J Physiol. 1981 Jun;315:395–412. doi: 10.1113/jphysiol.1981.sp013754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Olver R. E., Strang L. B. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol. 1974 Sep;241(2):327–357. doi: 10.1113/jphysiol.1974.sp010659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Orlowski J., Lingrel J. B. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem. 1988 Jul 25;263(21):10436–10442. [PubMed] [Google Scholar]
  45. Pitkänen O., Tanswell A. K., Downey G., O'Brodovich H. Increased Po2 alters the bioelectric properties of fetal distal lung epithelium. Am J Physiol. 1996 Jun;270(6 Pt 1):L1060–L1066. doi: 10.1152/ajplung.1996.270.6.L1060. [DOI] [PubMed] [Google Scholar]
  46. Preston G. M., Smith B. L., Zeidel M. L., Moulds J. J., Agre P. Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science. 1994 Sep 9;265(5178):1585–1587. doi: 10.1126/science.7521540. [DOI] [PubMed] [Google Scholar]
  47. Raina S., Preston G. M., Guggino W. B., Agre P. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem. 1995 Jan 27;270(4):1908–1912. doi: 10.1074/jbc.270.4.1908. [DOI] [PubMed] [Google Scholar]
  48. Rao A. K., Cott G. R. Ontogeny of ion transport across fetal pulmonary epithelial cells in monolayer culture. Am J Physiol. 1991 Aug;261(2 Pt 1):L178–L187. doi: 10.1152/ajplung.1991.261.2.L178. [DOI] [PubMed] [Google Scholar]
  49. Schnitzer J. E., Oh P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H416–H422. doi: 10.1152/ajpheart.1996.270.1.H416. [DOI] [PubMed] [Google Scholar]
  50. Tchepichev S., Ueda J., Canessa C., Rossier B. C., O'Brodovich H. Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am J Physiol. 1995 Sep;269(3 Pt 1):C805–C812. doi: 10.1152/ajpcell.1995.269.3.C805. [DOI] [PubMed] [Google Scholar]
  51. Umenishi F., Carter E. P., Yang B., Oliver B., Matthay M. A., Verkman A. S. Sharp increase in rat lung water channel expression in the perinatal period. Am J Respir Cell Mol Biol. 1996 Nov;15(5):673–679. doi: 10.1165/ajrcmb.15.5.8918374. [DOI] [PubMed] [Google Scholar]
  52. Umenishi F., Verkman A. S., Gropper M. A. Quantitative analysis of aquaporin mRNA expression in rat tissues by RNase protection assay. DNA Cell Biol. 1996 Jun;15(6):475–480. doi: 10.1089/dna.1996.15.475. [DOI] [PubMed] [Google Scholar]
  53. Verkman A. S., van Hoek A. N., Ma T., Frigeri A., Skach W. R., Mitra A., Tamarappoo B. K., Farinas J. Water transport across mammalian cell membranes. Am J Physiol. 1996 Jan;270(1 Pt 1):C12–C30. doi: 10.1152/ajpcell.1996.270.1.C12. [DOI] [PubMed] [Google Scholar]
  54. Wallen L. D., Perry S. F., Alston J. T., Maloney J. E. Morphometric study of the role of pulmonary arterial flow in fetal lung growth in sheep. Pediatr Res. 1990 Feb;27(2):122–127. doi: 10.1203/00006450-199002000-00004. [DOI] [PubMed] [Google Scholar]
  55. Walters D. V., Olver R. E. The role of catecholamines in lung liquid absorption at birth. Pediatr Res. 1978 Mar;12(3):239–242. doi: 10.1203/00006450-197803000-00017. [DOI] [PubMed] [Google Scholar]
  56. Zeitlin P. L., Loughlin G. M., Guggino W. B. Ion transport in cultured fetal and adult rabbit tracheal epithelia. Am J Physiol. 1988 May;254(5 Pt 1):C691–C698. doi: 10.1152/ajpcell.1988.254.5.C691. [DOI] [PubMed] [Google Scholar]
  57. van Hoek A. N., Verkman A. S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J Biol Chem. 1992 Sep 15;267(26):18267–18269. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES