Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1123–1136. doi: 10.1172/JCI119623

Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection.

K Thankavel 1, B Madison 1, T Ikeda 1, R Malaviya 1, A H Shah 1, P M Arumugam 1, S N Abraham 1
PMCID: PMC508287  PMID: 9276729

Abstract

The FimH subunit of type 1-fimbriated Escherichia coli has been implicated as an important determinant of bacterial adherence and colonization of the urinary tract. Here, we sought to localize the functionally important domain(s) within the FimH molecule and to determine if antibodies against this domain would block adherence of type 1-fimbriated E. coli to the bladder mucosa in situ and in vivo in an established mouse model of cystitis. We generated translational fusion proteins of disparate regions of the FimH molecule with an affinity tag MalE, and tested each of the fusion products in vitro for functional activity. The minimum region responsible for binding mouse bladder epithelial cells and a soluble mannoprotein, horseradish peroxidase, was contained within residues 1-100 of the FimH molecule. We validated and extended these findings by demonstrating that antibodies directed at the putative binding region of FimH or at synthetic peptides corresponding to epitopes within the binding domain could specifically block type 1 fimbriae-mediated bacterial adherence to bladder epithelial cells in situ and yeast cells in vitro. Next, we compared the ability of mice passively immunized intraperitoneally with antisera raised against residues 1-25 and 253-264 of FimH or 1-13 of FimA to resist bladder colonization in vivo after intravesicular challenge with type 1-fimbriated E. coli. Only the antibody directed at the putative binding region of FimH (anti- s-FimH1-25) significantly reduced E. coli bladder infections in the experimental mouse model of urinary tract infections. Similar results were obtained when the mice were actively immunized with synthetic peptides corresponding to residues 1-25 and 253-264 of FimH or 1-13 of FimA. The mechanism of protection was attributed, at least in part, to inhibition of bacterial adherence to the bladder surface by s-FimH1-25-specific antibody molecules that had filtered through the kidneys into the urine. The level of FimH antibodies entering the bladder from the circulatory system of the immunized mice was found to be markedly enhanced upon bacterial challenge. The potential broad spectrum activity of the protective FimH antibody was indicated from its serologic cross-reactivity with various urinary tract bacterial isolates bearing type 1 fimbriae. These findings could be relevant in the design of an efficacious and broadly reactive FimH vaccine against urinary tract infections.

Full Text

The Full Text of this article is available as a PDF (383.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham S. N., Babu J. P., Giampapa C. S., Hasty D. L., Simpson W. A., Beachey E. H. Protection against Escherichia coli-induced urinary tract infections with hybridoma antibodies directed against type 1 fimbriae or complementary D-mannose receptors. Infect Immun. 1985 Jun;48(3):625–628. doi: 10.1128/iai.48.3.625-628.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abraham S. N., Beachey E. H. Assembly of a chemically synthesized peptide of Escherichia coli type 1 fimbriae into fimbria-like antigenic structures. J Bacteriol. 1987 Jun;169(6):2460–2465. doi: 10.1128/jb.169.6.2460-2465.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abraham S. N., Goguen J. D., Sun D., Klemm P., Beachey E. H. Identification of two ancillary subunits of Escherichia coli type 1 fimbriae by using antibodies against synthetic oligopeptides of fim gene products. J Bacteriol. 1987 Dec;169(12):5530–5536. doi: 10.1128/jb.169.12.5530-5536.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abraham S. N., Sun D., Dale J. B., Beachey E. H. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature. 1988 Dec 15;336(6200):682–684. doi: 10.1038/336682a0. [DOI] [PubMed] [Google Scholar]
  5. Abraham S. N., Thankavel K., Malaviya R. Mast cells as modulators of host defense in the lung. Front Biosci. 1997 Feb 15;2:d78–d87. doi: 10.2741/a176. [DOI] [PubMed] [Google Scholar]
  6. Adegbola R. A., Old D. C. Antigenic relationships among type-1 fimbriae of Enterobacteriaceae revealed by immuno-electronmicroscopy. J Med Microbiol. 1987 Aug;24(1):21–28. doi: 10.1099/00222615-24-1-21. [DOI] [PubMed] [Google Scholar]
  7. Andriole V. T., Patterson T. F. Epidemiology, natural history, and management of urinary tract infections in pregnancy. Med Clin North Am. 1991 Mar;75(2):359–373. doi: 10.1016/s0025-7125(16)30459-x. [DOI] [PubMed] [Google Scholar]
  8. Beachey E. H., Seyer J. M. Protective and nonprotective epitopes of chemically synthesized peptides of the NH2-terminal region of type 6 streptococcal M protein. J Immunol. 1986 Mar 15;136(6):2287–2292. [PubMed] [Google Scholar]
  9. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  10. Bühler T., Hoschützky H., Jann K. Analysis of colonization factor antigen I, an adhesin of enterotoxigenic Escherichia coli O78:H11: fimbrial morphology and location of the receptor-binding site. Infect Immun. 1991 Nov;59(11):3876–3882. doi: 10.1128/iai.59.11.3876-3882.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clegg S., Gerlach G. F. Enterobacterial fimbriae. J Bacteriol. 1987 Mar;169(3):934–938. doi: 10.1128/jb.169.3.934-938.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Connell I., Agace W., Klemm P., Schembri M., Mărild S., Svanborg C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9827–9832. doi: 10.1073/pnas.93.18.9827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Derewenda Z., Yariv J., Helliwell J. R., Kalb A. J., Dodson E. J., Papiz M. Z., Wan T., Campbell J. The structure of the saccharide-binding site of concanavalin A. EMBO J. 1989 Aug;8(8):2189–2193. doi: 10.1002/j.1460-2075.1989.tb08341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  15. Ezekowitz R. A., Day L. E., Herman G. A. A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. J Exp Med. 1988 Mar 1;167(3):1034–1046. doi: 10.1084/jem.167.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feng L., Xia Y., Yoshimura T., Wilson C. B. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. J Clin Invest. 1995 Mar;95(3):1009–1017. doi: 10.1172/JCI117745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gerlach G. F., Clegg S., Allen B. L. Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol. 1989 Mar;171(3):1262–1270. doi: 10.1128/jb.171.3.1262-1270.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hagberg L., Jodal U., Korhonen T. K., Lidin-Janson G., Lindberg U., Svanborg Edén C. Adhesion, hemagglutination, and virulence of Escherichia coli causing urinary tract infections. Infect Immun. 1981 Feb;31(2):564–570. doi: 10.1128/iai.31.2.564-570.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hansson L., Wallbrandt P., Andersson J. O., Byström M., Bäckman A., Carlstein A., Enquist K., Lönn H., Otter C., Strömqvist M. Carbohydrate specificity of the Escherichia coli P-pilus papG protein is mediated by its N-terminal part. Biochim Biophys Acta. 1995 Jun 9;1244(2-3):377–383. doi: 10.1016/0304-4165(95)00028-a. [DOI] [PubMed] [Google Scholar]
  20. Harris S. L., Elliott D. A., Blake M. C., Must L. M., Messenger M., Orndorff P. E. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli. J Bacteriol. 1990 Nov;172(11):6411–6418. doi: 10.1128/jb.172.11.6411-6418.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haslam D. B., Borén T., Falk P., Ilver D., Chou A., Xu Z., Normark S. The amino-terminal domain of the P-pilus adhesin determines receptor specificity. Mol Microbiol. 1994 Nov;14(3):399–409. doi: 10.1111/j.1365-2958.1994.tb02175.x. [DOI] [PubMed] [Google Scholar]
  22. Holmgren J., Svennerholm A. M., Ouchterlony O., Anderson A., Walletström G., Westerberg-Berndtsson U. Antitoxic immunity in experimental cholera: protection, and serum and local antibody responses in rabbits after enteral and parenteral immunization. Infect Immun. 1975 Dec;12(6):1331–1340. doi: 10.1128/iai.12.6.1331-1340.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hultgren S. J., Normark S., Abraham S. N. Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol. 1991;45:383–415. doi: 10.1146/annurev.mi.45.100191.002123. [DOI] [PubMed] [Google Scholar]
  24. Jacobs A. A., Simons B. H., de Graaf F. K. The role of lysine-132 and arginine-136 in the receptor-binding domain of the K99 fibrillar subunit. EMBO J. 1987 Jun;6(6):1805–1808. doi: 10.1002/j.1460-2075.1987.tb02434.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jacobs A. A., Venema J., Leeven R., van Pelt-Heerschap H., de Graaf F. K. Inhibition of adhesive activity of K88 fibrillae by peptides derived from the K88 adhesin. J Bacteriol. 1987 Feb;169(2):735–741. doi: 10.1128/jb.169.2.735-741.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Johnson J. R. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev. 1991 Jan;4(1):80–128. doi: 10.1128/cmr.4.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jones C. H., Pinkner J. S., Nicholes A. V., Slonim L. N., Abraham S. N., Hultgren S. J. FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8397–8401. doi: 10.1073/pnas.90.18.8397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones C. H., Pinkner J. S., Roth R., Heuser J., Nicholes A. V., Abraham S. N., Hultgren S. J. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2081–2085. doi: 10.1073/pnas.92.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Keane W. F., Freedman L. R. Experimental pyelonephritis. XIV. Pyelonephritis in normal mice produced by inoculation of E. coli into the bladder lumen during water diuresis. Yale J Biol Med. 1967 Dec;40(3):231–237. [PMC free article] [PubMed] [Google Scholar]
  30. Keith B. R., Maurer L., Spears P. A., Orndorff P. E. Receptor-binding function of type 1 pili effects bladder colonization by a clinical isolate of Escherichia coli. Infect Immun. 1986 Sep;53(3):693–696. doi: 10.1128/iai.53.3.693-696.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Klemm P., Christiansen G. Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae. Mol Gen Genet. 1987 Jul;208(3):439–445. doi: 10.1007/BF00328136. [DOI] [PubMed] [Google Scholar]
  32. Kwun K., Bramis J. P., Haimov M., Slifkin R., Glabman S., Burrows L. Persistent immunoglobulinuria in irreversible renal allograft rejection in humans. Transplantation. 1977 Dec;24(6):453–457. doi: 10.1097/00007890-197712000-00009. [DOI] [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Lee K. K., Sheth H. B., Wong W. Y., Sherburne R., Paranchych W., Hodges R. S., Lingwood C. A., Krivan H., Irvin R. T. The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol. 1994 Feb;11(4):705–713. doi: 10.1111/j.1365-2958.1994.tb00348.x. [DOI] [PubMed] [Google Scholar]
  35. Levine M. M., Black R. E., Brinton C. C., Jr, Clements M. L., Fusco P., Hughes T. P., O'Donnell S., Robins-Browne R., Wood S., Young C. R. Reactogenicity, immunogenicity and efficacy studies of Escherichia coli type 1 somatic pili parenteral vaccine in man. Scand J Infect Dis Suppl. 1982;33:83–95. [PubMed] [Google Scholar]
  36. Madison B., Ofek I., Clegg S., Abraham S. N. Type 1 fimbrial shafts of Escherichia coli and Klebsiella pneumoniae influence sugar-binding specificities of their FimH adhesins. Infect Immun. 1994 Mar;62(3):843–848. doi: 10.1128/iai.62.3.843-848.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Malaviya R., Ikeda T., Ross E., Abraham S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature. 1996 May 2;381(6577):77–80. doi: 10.1038/381077a0. [DOI] [PubMed] [Google Scholar]
  38. Malaviya R., Ross E., Jakschik B. A., Abraham S. N. Mast cell degranulation induced by type 1 fimbriated Escherichia coli in mice. J Clin Invest. 1994 Apr;93(4):1645–1653. doi: 10.1172/JCI117146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Matsumoto T., Mizunoe Y., Sakamoto N., Tanaka M., Kumazawa J. Increased renal scarring by bacteria with mannose-sensitive pili. Urol Res. 1990;18(5):299–303. doi: 10.1007/BF00300774. [DOI] [PubMed] [Google Scholar]
  40. Mattsby-Baltzer I., Hanson L. A., Olling S., Kaijser B. Experimental Escherichia coli ascending pyelonephritis in rats: active peroral immunization with live Escherichia coli. Infect Immun. 1982 Feb;35(2):647–653. doi: 10.1128/iai.35.2.647-653.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Maurer L., Orndorff P. E. Identification and characterization of genes determining receptor binding and pilus length of Escherichia coli type 1 pili. J Bacteriol. 1987 Feb;169(2):640–645. doi: 10.1128/jb.169.2.640-645.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. May A. K., Bloch C. A., Sawyer R. G., Spengler M. D., Pruett T. L. Enhanced virulence of Escherichia coli bearing a site-targeted mutation in the major structural subunit of type 1 fimbriae. Infect Immun. 1993 May;61(5):1667–1673. doi: 10.1128/iai.61.5.1667-1673.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Minion F. C., Abraham S. N., Beachey E. H., Goguen J. D. The genetic determinant of adhesive function in type 1 fimbriae of Escherichia coli is distinct from the gene encoding the fimbrial subunit. J Bacteriol. 1986 Mar;165(3):1033–1036. doi: 10.1128/jb.165.3.1033-1036.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mundi H., Björkstén B., Svanborg C., Ohman L., Dahlgren C. Extracellular release of reactive oxygen species from human neutrophils upon interaction with Escherichia coli strains causing renal scarring. Infect Immun. 1991 Nov;59(11):4168–4172. doi: 10.1128/iai.59.11.4168-4172.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Neu H. C. The crisis in antibiotic resistance. Science. 1992 Aug 21;257(5073):1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
  46. O'Hanley P., Lark D., Falkow S., Schoolnik G. Molecular basis of Escherichia coli colonization of the upper urinary tract in BALB/c mice. Gal-Gal pili immunization prevents Escherichia coli pyelonephritis in the BALB/c mouse model of human pyelonephritis. J Clin Invest. 1985 Feb;75(2):347–360. doi: 10.1172/JCI111707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Orndorff P. E., Falkow S. Organization and expression of genes responsible for type 1 piliation in Escherichia coli. J Bacteriol. 1984 Aug;159(2):736–744. doi: 10.1128/jb.159.2.736-744.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Patton J. P., Nash D. B., Abrutyn E. Urinary tract infection: economic considerations. Med Clin North Am. 1991 Mar;75(2):495–513. doi: 10.1016/s0025-7125(16)30466-7. [DOI] [PubMed] [Google Scholar]
  49. Pecha B., Low D., O'Hanley P. Gal-Gal pili vaccines prevent pyelonephritis by piliated Escherichia coli in a murine model. Single-component Gal-Gal pili vaccines prevent pyelonephritis by homologous and heterologous piliated E. coli strains. J Clin Invest. 1989 Jun;83(6):2102–2108. doi: 10.1172/JCI114123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ponniah S., Endres R. O., Hasty D. L., Abraham S. N. Fragmentation of Escherichia coli type 1 fimbriae exposes cryptic D-mannose-binding sites. J Bacteriol. 1991 Jul;173(13):4195–4202. doi: 10.1128/jb.173.13.4195-4202.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Reid G., Sobel J. D. Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis. 1987 May-Jun;9(3):470–487. doi: 10.1093/clinids/9.3.470. [DOI] [PubMed] [Google Scholar]
  52. Rene P., Dinolfo M., Silverblatt F. J. Serum and urogenital antibody responses to Escherichia coli pili in cystitis. Infect Immun. 1982 Nov;38(2):542–547. doi: 10.1128/iai.38.2.542-547.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Saarela S., Taira S., Nurmiaho-Lassila E. L., Makkonen A., Rhen M. The Escherichia coli G-fimbrial lectin protein participates both in fimbrial biogenesis and in recognition of the receptor N-acetyl-D-glucosamine. J Bacteriol. 1995 Mar;177(6):1477–1484. doi: 10.1128/jb.177.6.1477-1484.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schmidt M. A. Synthetic peptides: prospects for a pili (fimbriae)-based synthetic vaccine. Curr Top Microbiol Immunol. 1990;151:185–204. doi: 10.1007/978-3-642-74703-8_10. [DOI] [PubMed] [Google Scholar]
  55. Silverblatt F. J., Cohen L. S. Antipili antibody affords protection against experimental ascending pyelonephritis. J Clin Invest. 1979 Jul;64(1):333–336. doi: 10.1172/JCI109458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Silverblatt F. J., Weinstein R., Rene P. Protection against experimental pyelonephritis by antibodies to pili. Scand J Infect Dis Suppl. 1982;33:79–82. [PubMed] [Google Scholar]
  57. Steadman R., Topley N., Jenner D. E., Davies M., Williams J. D. Type 1 fimbriate Escherichia coli stimulates a unique pattern of degranulation by human polymorphonuclear leukocytes. Infect Immun. 1988 Apr;56(4):815–822. doi: 10.1128/iai.56.4.815-822.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Svanborg Edén C., Bjursten L. M., Hull R., Hull S., Magnusson K. E., Moldovano Z., Leffler H. Influence of adhesins on the interaction of Escherichia coli with human phagocytes. Infect Immun. 1984 Jun;44(3):672–680. doi: 10.1128/iai.44.3.672-680.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Svanborg Edén C., de Man P. Bacterial virulence in urinary tract infection. Infect Dis Clin North Am. 1987 Dec;1(4):731–750. [PubMed] [Google Scholar]
  60. Tewari R., MacGregor J. I., Ikeda T., Little J. R., Hultgren S. J., Abraham S. N. Neutrophil activation by nascent FimH subunits of type 1 fimbriae purified from the periplasm of Escherichia coli. J Biol Chem. 1993 Feb 5;268(4):3009–3015. [PubMed] [Google Scholar]
  61. Thapar M. A., Parr E. L., Bozzola J. J., Parr M. B. Secretory immune responses in the mouse vagina after parenteral or intravaginal immunization with an immunostimulating complex (ISCOM). Vaccine. 1991 Feb;9(2):129–133. doi: 10.1016/0264-410x(91)90269-c. [DOI] [PubMed] [Google Scholar]
  62. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tran Van Nhieu G., Isberg R. R. Isolation and identification of eukaryotic receptors promoting bacterial internalization. Methods Enzymol. 1994;236:307–318. doi: 10.1016/0076-6879(94)36023-5. [DOI] [PubMed] [Google Scholar]
  64. Turner M. W., Rowe D. S. Antibodies of IgA and IgG class in normal human urine. Immunology. 1967 Jun;12(6):689–699. [PMC free article] [PubMed] [Google Scholar]
  65. Wong W. Y., Campbell A. P., McInnes C., Sykes B. D., Paranchych W., Irvin R. T., Hodges R. S. Structure-function analysis of the adherence-binding domain on the pilin of Pseudomonas aeruginosa strains PAK and KB7. Biochemistry. 1995 Oct 10;34(40):12963–12972. doi: 10.1021/bi00040a006. [DOI] [PubMed] [Google Scholar]
  66. Wu X. R., Sun T. T., Medina J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9630–9635. doi: 10.1073/pnas.93.18.9630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Xu Z., Jones C. H., Haslam D., Pinkner J. S., Dodson K., Kihlberg J., Hultgren S. J. Molecular dissection of PapD interaction with PapG reveals two chaperone-binding sites. Mol Microbiol. 1995 Jun;16(5):1011–1020. doi: 10.1111/j.1365-2958.1995.tb02326.x. [DOI] [PubMed] [Google Scholar]
  68. Zeheb R., Orr G. A. Use of avidin-iminobiotin complexes for purifying plasma membrane proteins. Methods Enzymol. 1986;122:87–94. doi: 10.1016/0076-6879(86)22153-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES