Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1174–1179. doi: 10.1172/JCI119629

Leptin constrains acetylcholine-induced insulin secretion from pancreatic islets of ob/ob mice.

N G Chen 1, A G Swick 1, D R Romsos 1
PMCID: PMC508293  PMID: 9276734

Abstract

Hypersecretion of insulin from the pancreas is among the earliest detectable metabolic alterations in some genetically obese animals including the ob/ob mouse and in some obesity-prone humans. Since the primary cause of obesity in the ob/ob mouse is a lack of leptin due to a mutation in the ob gene, we tested the hypothesis that leptin targets a regulatory pathway in pancreatic islets to prevent hypersecretion of insulin. Insulin secretion is regulated by changes in blood glucose, as well as by peptides from the gastrointestinal tract and neurotransmitters that activate the pancreatic islet adenylyl cyclase (e.g., glucagon-like peptide-1) and phospholipase C (PLC) (e.g., acetylcholine) signaling pathways to further potentiate glucose-induced insulin secretion. Effects of leptin on each of these regulatory pathways were thus examined. Leptin did not influence glucose or glucagon-like peptide-1-induced insulin secretion from islets of either ob/ob or lean mice, consistent with earlier findings that these regulatory pathways do not contribute to the early-onset hypersecretion of insulin from islets of ob/ob mice. However, leptin did constrain the enhanced PLC- mediated insulin secretion characteristic of islets from ob/ob mice, without influencing release from islets of lean mice. A specific enhancement in PLC-mediated insulin secretion is the earliest reported developmental alteration in insulin secretion from islets of ob/ob mice, and thus a logical target for leptin action. This action of leptin on PLC-mediated insulin secretion was dose-dependent, rapid-onset (i.e., within 3 min), and reversible. Leptin was equally effective in constraining the enhanced insulin release from islets of ob/ob mice caused by protein kinase C (PKC) activation, a downstream mediator of the PLC signal pathway. One function of leptin in control of body composition is thus to target a PKC-regulated component of the PLC-PKC signaling system within islets to prevent hypersecretion of insulin.

Full Text

The Full Text of this article is available as a PDF (200.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akita Y., Ohno S., Konno Y., Yano A., Suzuki K. Expression and properties of two distinct classes of the phorbol ester receptor family, four conventional protein kinase C types, and a novel protein kinase C. J Biol Chem. 1990 Jan 5;265(1):354–362. [PubMed] [Google Scholar]
  2. Atef N., Brulé C., Bihoreau M. T., Ktorza A., Picon L., Pénicaud L. Enhanced insulin secretory response to acetylcholine by perifused pancreas of 5-day-old preobese Zucker rats. Endocrinology. 1991 Oct;129(4):2219–2224. doi: 10.1210/endo-129-4-2219. [DOI] [PubMed] [Google Scholar]
  3. Campfield L. A., Smith F. J., Burn P. The OB protein (leptin) pathway--a link between adipose tissue mass and central neural networks. Horm Metab Res. 1996 Dec;28(12):619–632. doi: 10.1055/s-2007-979867. [DOI] [PubMed] [Google Scholar]
  4. Campfield L. A., Smith F. J., Guisez Y., Devos R., Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995 Jul 28;269(5223):546–549. doi: 10.1126/science.7624778. [DOI] [PubMed] [Google Scholar]
  5. Caro J. F., Sinha M. K., Kolaczynski J. W., Zhang P. L., Considine R. V. Leptin: the tale of an obesity gene. Diabetes. 1996 Nov;45(11):1455–1462. doi: 10.2337/diab.45.11.1455. [DOI] [PubMed] [Google Scholar]
  6. Chen G., Koyama K., Yuan X., Lee Y., Zhou Y. T., O'Doherty R., Newgard C. B., Unger R. H. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14795–14799. doi: 10.1073/pnas.93.25.14795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen N. G., Romsos D. R. Enhanced sensitivity of pancreatic islets from preobese 2-week-old ob/ob mice to neurohormonal stimulation of insulin secretion. Endocrinology. 1995 Feb;136(2):505–511. doi: 10.1210/endo.136.2.7835283. [DOI] [PubMed] [Google Scholar]
  8. Chen N. G., Romsos D. R. Persistently enhanced sensitivity of pancreatic islets from ob/ob mice to PKC-stimulated insulin secretion. Am J Physiol. 1997 Feb;272(2 Pt 1):E304–E311. doi: 10.1152/ajpendo.1997.272.2.E304. [DOI] [PubMed] [Google Scholar]
  9. Cohen B., Novick D., Rubinstein M. Modulation of insulin activities by leptin. Science. 1996 Nov 15;274(5290):1185–1188. doi: 10.1126/science.274.5290.1185. [DOI] [PubMed] [Google Scholar]
  10. Considine R. V., Sinha M. K., Heiman M. L., Kriauciunas A., Stephens T. W., Nyce M. R., Ohannesian J. P., Marco C. C., McKee L. J., Bauer T. L. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996 Feb 1;334(5):292–295. doi: 10.1056/NEJM199602013340503. [DOI] [PubMed] [Google Scholar]
  11. Creutzfeldt W., Ebert R. New developments in the incretin concept. Diabetologia. 1985 Aug;28(8):565–573. doi: 10.1007/BF00281990. [DOI] [PubMed] [Google Scholar]
  12. Dubuc P. U. The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism. 1976 Dec;25(12):1567–1574. doi: 10.1016/0026-0495(76)90109-8. [DOI] [PubMed] [Google Scholar]
  13. Emilsson V., Liu Y. L., Cawthorne M. A., Morton N. M., Davenport M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes. 1997 Feb;46(2):313–316. doi: 10.2337/diab.46.2.313. [DOI] [PubMed] [Google Scholar]
  14. Gefel D., Hendrick G. K., Mojsov S., Habener J., Weir G. C. Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology. 1990 Apr;126(4):2164–2168. doi: 10.1210/endo-126-4-2164. [DOI] [PubMed] [Google Scholar]
  15. Ghilardi N., Ziegler S., Wiestner A., Stoffel R., Heim M. H., Skoda R. C. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6231–6235. doi: 10.1073/pnas.93.13.6231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ghilardi N., Ziegler S., Wiestner A., Stoffel R., Heim M. H., Skoda R. C. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6231–6235. doi: 10.1073/pnas.93.13.6231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Glaum S. R., Hara M., Bindokas V. P., Lee C. C., Polonsky K. S., Bell G. I., Miller R. J. Leptin, the obese gene product, rapidly modulates synaptic transmission in the hypothalamus. Mol Pharmacol. 1996 Aug;50(2):230–235. [PubMed] [Google Scholar]
  18. Halaas J. L., Gajiwala K. S., Maffei M., Cohen S. L., Chait B. T., Rabinowitz D., Lallone R. L., Burley S. K., Friedman J. M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995 Jul 28;269(5223):543–546. doi: 10.1126/science.7624777. [DOI] [PubMed] [Google Scholar]
  19. Kieffer T. J., Heller R. S., Habener J. F. Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun. 1996 Jul 16;224(2):522–527. doi: 10.1006/bbrc.1996.1059. [DOI] [PubMed] [Google Scholar]
  20. Knutson K. L., Hoenig M. Identification and subcellular characterization of protein kinase-C isoforms in insulinoma beta-cells and whole islets. Endocrinology. 1994 Sep;135(3):881–886. doi: 10.1210/endo.135.3.8070382. [DOI] [PubMed] [Google Scholar]
  21. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  22. Le Stunff C., Bougnères P. Early changes in postprandial insulin secretion, not in insulin sensitivity, characterize juvenile obesity. Diabetes. 1994 May;43(5):696–702. doi: 10.2337/diab.43.5.696. [DOI] [PubMed] [Google Scholar]
  23. Leclercq-Meyer V., Considine R. V., Sener A., Malaisse W. J. Do leptin receptors play a functional role in the endocrine pancreas? Biochem Biophys Res Commun. 1996 Dec 24;229(3):794–798. doi: 10.1006/bbrc.1996.1882. [DOI] [PubMed] [Google Scholar]
  24. Lee G. H., Proenca R., Montez J. M., Carroll K. M., Darvishzadeh J. G., Lee J. I., Friedman J. M. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996 Feb 15;379(6566):632–635. doi: 10.1038/379632a0. [DOI] [PubMed] [Google Scholar]
  25. Levin N., Nelson C., Gurney A., Vandlen R., de Sauvage F. Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1726–1730. doi: 10.1073/pnas.93.4.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lin P. Y., Romsos D. R., Leveille G. A. Food intake, body weight gain, and body composition of the young obese (ob/ob) mouse. J Nutr. 1977 Sep;107(9):1715–1723. doi: 10.1093/jn/107.9.1715. [DOI] [PubMed] [Google Scholar]
  27. Luiten P. G., ter Horst G. J., Steffens A. B. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol. 1987;28(1):1–54. doi: 10.1016/0301-0082(87)90004-9. [DOI] [PubMed] [Google Scholar]
  28. Maffei M., Halaas J., Ravussin E., Pratley R. E., Lee G. H., Zhang Y., Fei H., Kim S., Lallone R., Ranganathan S. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995 Nov;1(11):1155–1161. doi: 10.1038/nm1195-1155. [DOI] [PubMed] [Google Scholar]
  29. Pelleymounter M. A., Cullen M. J., Baker M. B., Hecht R., Winters D., Boone T., Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995 Jul 28;269(5223):540–543. doi: 10.1126/science.7624776. [DOI] [PubMed] [Google Scholar]
  30. Persaud S. J., Jones P. M., Howell S. L. Staurosporine inhibits protein kinases activated by Ca2+ and cyclic AMP in addition to inhibiting protein kinase C in rat islets of Langerhans. Mol Cell Endocrinol. 1993 Jul;94(1):55–60. doi: 10.1016/0303-7207(93)90051-k. [DOI] [PubMed] [Google Scholar]
  31. Persaud S. J., Jones P. M., Sugden D., Howell S. L. The role of protein kinase C in cholinergic stimulation of insulin secretion from rat islets of Langerhans. Biochem J. 1989 Dec 15;264(3):753–758. doi: 10.1042/bj2640753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  33. Ravussin E., Pratley R. E., Maffei M., Wang H., Friedman J. M., Bennett P. H., Bogardus C. Relatively low plasma leptin concentrations precede weight gain in Pima Indians. Nat Med. 1997 Feb;3(2):238–240. doi: 10.1038/nm0297-238. [DOI] [PubMed] [Google Scholar]
  34. Schnefel S., Banfic H., Eckhardt L., Schultz G., Schulz I. Acetylcholine and cholecystokinin receptors functionally couple by different G-proteins to phospholipase C in pancreatic acinar cells. FEBS Lett. 1988 Mar 28;230(1-2):125–130. doi: 10.1016/0014-5793(88)80655-0. [DOI] [PubMed] [Google Scholar]
  35. Stephens T. W., Basinski M., Bristow P. K., Bue-Valleskey J. M., Burgett S. G., Craft L., Hale J., Hoffmann J., Hsiung H. M., Kriauciunas A. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995 Oct 12;377(6549):530–532. doi: 10.1038/377530a0. [DOI] [PubMed] [Google Scholar]
  36. Tartaglia L. A., Dembski M., Weng X., Deng N., Culpepper J., Devos R., Richards G. J., Campfield L. A., Clark F. T., Deeds J. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995 Dec 29;83(7):1263–1271. doi: 10.1016/0092-8674(95)90151-5. [DOI] [PubMed] [Google Scholar]
  37. Tassava T. M., Okuda T., Romsos D. R. Insulin secretion from ob/ob mouse pancreatic islets: effects of neurotransmitters. Am J Physiol. 1992 Mar;262(3 Pt 1):E338–E343. doi: 10.1152/ajpendo.1992.262.3.E338. [DOI] [PubMed] [Google Scholar]
  38. Zawalich W. S., Rasmussen H. Control of insulin secretion: a model involving Ca2+, cAMP and diacylglycerol. Mol Cell Endocrinol. 1990 Apr 17;70(2):119–137. doi: 10.1016/0303-7207(90)90152-x. [DOI] [PubMed] [Google Scholar]
  39. Zawalich W. S., Zawalich K. C. Signal transduction in isolated islets from the ob/ob mouse: enhanced sensitivity of protein kinase C to stimulation. Biochem Biophys Res Commun. 1996 Jun 25;223(3):618–623. doi: 10.1006/bbrc.1996.0944. [DOI] [PubMed] [Google Scholar]
  40. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425–432. doi: 10.1038/372425a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES