Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1180–1192. doi: 10.1172/JCI119630

Stimulus coupling to transcription versus secretion in pheochromocytoma cells. Convergent and divergent signal transduction pathways and the crucial roles for route of cytosolic calcium entry and protein kinase C.

K Tang 1, H Wu 1, S K Mahata 1, M Mahata 1, B M Gill 1, R J Parmer 1, D T O'Connor 1
PMCID: PMC508294  PMID: 9276735

Abstract

How do chromaffin cell secretory stimuli program resynthesis of secreted peptides and amines? We previously showed that the physiologic nicotinic cholinergic signal for secretion also activates the biosynthesis of chromogranin A, the major protein released with catecholamines. Here, we examine signal transduction pathways whereby secretory stimuli influence exocytotic secretion versus chromogranin A transcription. Both secretion and transcription depended on initial nicotinic-triggered sodium entry into the cytosol, followed by calcium entry through -type voltage-gated channels. When calcium entered through -type channels, activation of secretion paralleled activation of transcription (r = 0.897, P = 0.002). Calcium entry from intracellular stores or through calcium ionophore channels activated secretion, though not transcription. Nicotinic-stimulated transcription depended upon protein kinase C activation; nicotine caused translocation of protein kinase C to the cell membrane fraction, and inhibition of protein kinase C blocked activation of transcription, while activation of protein kinase C mimicked nicotine effects. Transcriptional responses to both nicotine and protein kinase C mapped principally onto the chromogranin A promoter's cAMP response element (TGACGTAA; CRE box). KCREB, a dominant negative mutant of the CRE-binding protein CREB, blunted activation of chromogranin A transcription by nicotine, phorbol ester, or membrane depolarization. We conclude that activation of chromogranin A transcription by secretory stimulation in chromaffin cells is highly dependent upon precise route of calcium entry into the cytosol; transcription occurred after entry of calcium through -type channels on the cell surface, and was mediated by protein kinase C activation. The trans-acting factor CREB ultimately relays the secretory signal to the chromogranin A promoter's CRE box in cis.

Full Text

The Full Text of this article is available as a PDF (322.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Imagawa M., Chiu R., Stein B., Imbra R. J., Rahmsdorf H. J., Jonat C., Herrlich P., Karin M. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell. 1987 Jun 19;49(6):729–739. doi: 10.1016/0092-8674(87)90611-8. [DOI] [PubMed] [Google Scholar]
  2. Armstrong R. C., Montminy M. R. Transsynaptic control of gene expression. Annu Rev Neurosci. 1993;16:17–29. doi: 10.1146/annurev.ne.16.030193.000313. [DOI] [PubMed] [Google Scholar]
  3. Bading H., Ginty D. D., Greenberg M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993 Apr 9;260(5105):181–186. doi: 10.1126/science.8097060. [DOI] [PubMed] [Google Scholar]
  4. Banerjee S. A., Hoppe P., Brilliant M., Chikaraishi D. M. 5' flanking sequences of the rat tyrosine hydroxylase gene target accurate tissue-specific, developmental, and transsynaptic expression in transgenic mice. J Neurosci. 1992 Nov;12(11):4460–4467. doi: 10.1523/JNEUROSCI.12-11-04460.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bittner M. A., Holz R. W. Protein kinase C and clostridial neurotoxins affect discrete and related steps in the secretory pathway. Cell Mol Neurobiol. 1993 Dec;13(6):649–664. doi: 10.1007/BF00711564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bullock A. E., Barke K. E., Schneider A. S. Nicotine tolerance in chromaffin cell cultures: acute and chronic exposure to smoking-related nicotine doses. J Neurochem. 1994 May;62(5):1863–1869. doi: 10.1046/j.1471-4159.1994.62051863.x. [DOI] [PubMed] [Google Scholar]
  7. Burgoyne R. D. Mechanisms of catecholamine secretion from adrenal chromaffin cells. J Physiol Pharmacol. 1995 Sep;46(3):273–283. [PubMed] [Google Scholar]
  8. Burgoyne R. D., Morgan A., Robinson I., Pender N., Cheek T. R. Exocytosis in adrenal chromaffin cells. J Anat. 1993 Oct;183(Pt 2):309–314. [PMC free article] [PubMed] [Google Scholar]
  9. Burgoyne R. D., Morgan A., Roth D. Characterization of proteins that regulate calcium-dependent exocytosis in adrenal chromaffin cells. Ann N Y Acad Sci. 1994 Mar 9;710:333–346. doi: 10.1111/j.1749-6632.1994.tb26640.x. [DOI] [PubMed] [Google Scholar]
  10. Burgoyne R. D., Norman K. M. Effect of calmidazolium and phorbol ester on catecholamine secretion from adrenal chromaffin cells. Biochim Biophys Acta. 1984 Sep 14;805(1):37–43. doi: 10.1016/0167-4889(84)90034-x. [DOI] [PubMed] [Google Scholar]
  11. Eiden L. E., Iacangelo A., Hsu C. M., Hotchkiss A. J., Bader M. F., Aunis D. Chromogranin A synthesis and secretion in chromaffin cells. J Neurochem. 1987 Jul;49(1):65–74. doi: 10.1111/j.1471-4159.1987.tb03395.x. [DOI] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Fischer-Colbrie R., Eskay R. L., Eiden L. E., Maas D. Transsynaptic regulation of galanin, neurotensin, and substance P in the adrenal medulla: combinatorial control by second-messenger signaling pathways. J Neurochem. 1992 Aug;59(2):780–783. doi: 10.1111/j.1471-4159.1992.tb09440.x. [DOI] [PubMed] [Google Scholar]
  14. Gallin W. J., Greenberg M. E. Calcium regulation of gene expression in neurons: the mode of entry matters. Curr Opin Neurobiol. 1995 Jun;5(3):367–374. doi: 10.1016/0959-4388(95)80050-6. [DOI] [PubMed] [Google Scholar]
  15. Gallin W. J., Greenberg M. E. Calcium regulation of gene expression in neurons: the mode of entry matters. Curr Opin Neurobiol. 1995 Jun;5(3):367–374. doi: 10.1016/0959-4388(95)80050-6. [DOI] [PubMed] [Google Scholar]
  16. Ghosh A., Ginty D. D., Bading H., Greenberg M. E. Calcium regulation of gene expression in neuronal cells. J Neurobiol. 1994 Mar;25(3):294–303. doi: 10.1002/neu.480250309. [DOI] [PubMed] [Google Scholar]
  17. Ginty D. D. Calcium regulation of gene expression: isn't that spatial? Neuron. 1997 Feb;18(2):183–186. doi: 10.1016/s0896-6273(00)80258-5. [DOI] [PubMed] [Google Scholar]
  18. Greenberg M. E., Thompson M. A., Sheng M. Calcium regulation of immediate early gene transcription. J Physiol Paris. 1992;86(1-3):99–108. doi: 10.1016/s0928-4257(05)80013-0. [DOI] [PubMed] [Google Scholar]
  19. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hamano S., Morita K., Azuma M., Oka M., Teraoka K. Pharmacological study on Ba2(+)-stimulated catecholamine secretion from cultured bovine adrenal chromaffin cells: possible relation of Ba2+ action to Ca(2+)-activated secretory mechanism. Jpn J Pharmacol. 1991 Jan;55(1):43–50. doi: 10.1254/jjp.55.43. [DOI] [PubMed] [Google Scholar]
  21. Hardingham G. E., Chawla S., Johnson C. M., Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature. 1997 Jan 16;385(6613):260–265. doi: 10.1038/385260a0. [DOI] [PubMed] [Google Scholar]
  22. Hasel K. W., Sutcliffe J. G. Nucleotide sequence of a cDNA coding for mouse cyclophilin. Nucleic Acids Res. 1990 Jul 11;18(13):4019–4019. doi: 10.1093/nar/18.13.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hiremagalur B., Kvetnansky R., Nankova B., Fleischer J., Geertman R., Fukuhara K., Viskupic E., Sabban E. L. Stress elicits trans-synaptic activation of adrenal neuropeptide Y gene expression. Brain Res Mol Brain Res. 1994 Nov;27(1):138–144. doi: 10.1016/0169-328x(94)90194-5. [DOI] [PubMed] [Google Scholar]
  24. Hiremagalur B., Nankova B., Nitahara J., Zeman R., Sabban E. L. Nicotine increases expression of tyrosine hydroxylase gene. Involvement of protein kinase A-mediated pathway. J Biol Chem. 1993 Nov 5;268(31):23704–23711. [PubMed] [Google Scholar]
  25. Holz R. W., Senyshyn J., Bittner M. A. Mechanisms involved in calcium-dependent exocytosis. Ann N Y Acad Sci. 1991;635:382–392. doi: 10.1111/j.1749-6632.1991.tb36506.x. [DOI] [PubMed] [Google Scholar]
  26. Iacangelo A. L., Eiden L. E. Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regul Pept. 1995 Aug 22;58(3):65–88. doi: 10.1016/0167-0115(95)00069-n. [DOI] [PubMed] [Google Scholar]
  27. Icard-Liepkalns C., Berrard S., Faucon Biguet N., Lebourdelles B., Ravassard P., Robert J. J., Mallet J. Tyrosine hydroxylase regulation in neurotransmission and neuroplasticity. J Physiol Paris. 1993;87(3):153–157. doi: 10.1016/0928-4257(93)90026-p. [DOI] [PubMed] [Google Scholar]
  28. Icard-Liepkalns C., Biguet N. F., Vyas S., Robert J. J., Sassone-Corsi P., Mallet J. AP-1 complex and c-fos transcription are involved in TPA provoked and trans-synaptic inductions of the tyrosine hydroxylase gene: insights into long-term regulatory mechanisms. J Neurosci Res. 1992 Jun;32(2):290–298. doi: 10.1002/jnr.490320219. [DOI] [PubMed] [Google Scholar]
  29. Kilbourne E. J., Nankova B. B., Lewis E. J., McMahon A., Osaka H., Sabban D. B., Sabban E. L. Regulated expression of the tyrosine hydroxylase gene by membrane depolarization. Identification of the responsive element and possible second messengers. J Biol Chem. 1992 Apr 15;267(11):7563–7569. [PubMed] [Google Scholar]
  30. Livett B. G., Marley P. D. Noncholinergic control of adrenal catecholamine secretion. J Anat. 1993 Oct;183(Pt 2):277–289. [PMC free article] [PubMed] [Google Scholar]
  31. MacArthur L., Koller K. J., Eiden L. E. Enkephalin gene transcription in bovine chromaffin cells is regulated by calcium and protein kinase A signal transduction pathways: identification of DNase I-hypersensitive sites. Mol Pharmacol. 1993 Sep;44(3):545–551. [PubMed] [Google Scholar]
  32. Mahata M., Mahata S. K., Parmer R. J., O'Connor D. T. Vesicular monoamine transport inhibitors. Novel action at calcium channels to prevent catecholamine secretion. Hypertension. 1996 Sep;28(3):414–420. doi: 10.1161/01.hyp.28.3.414. [DOI] [PubMed] [Google Scholar]
  33. Morita K., Teraoka K., Azuma M., Oka M., Hamano S. Stimulatory action of Ba2+ on catecholamine biosynthesis in cultured bovine adrenal chromaffin cells: possible relation to protein kinase C. Jpn J Pharmacol. 1990 Dec;54(4):425–432. doi: 10.1254/jjp.54.425. [DOI] [PubMed] [Google Scholar]
  34. Morita K., Wong D. L. Role of Egr-1 in cholinergic stimulation of phenylethanolamine N-methyltransferase promoter. J Neurochem. 1996 Oct;67(4):1344–1351. doi: 10.1046/j.1471-4159.1996.67041344.x. [DOI] [PubMed] [Google Scholar]
  35. Muallem S., Schoeffield M. S., Fimmel C. J., Pandol S. J. Agonist-sensitive calcium pool in the pancreatic acinar cell. I. Permeability properties. Am J Physiol. 1988 Aug;255(2 Pt 1):G221–G228. doi: 10.1152/ajpgi.1988.255.2.G221. [DOI] [PubMed] [Google Scholar]
  36. Nankova B., Devlin D., Kvetnanský R., Kopin I. J., Sabban E. L. Repeated immobilization stress increases the binding of c-Fos-like proteins to a rat dopamine beta-hydroxylase promoter enhancer sequence. J Neurochem. 1993 Aug;61(2):776–779. doi: 10.1111/j.1471-4159.1993.tb02188.x. [DOI] [PubMed] [Google Scholar]
  37. Parmer R. J., Koop A. H., Handa M. T., O'Connor D. T. Molecular cloning of chromogranin A from rat pheochromocytoma cells. Hypertension. 1989 Oct;14(4):435–444. doi: 10.1161/01.hyp.14.4.435. [DOI] [PubMed] [Google Scholar]
  38. Parmer R. J., Xi X. P., Wu H. J., Helman L. J., Petz L. N. Secretory protein traffic. Chromogranin A contains a dominant targeting signal for the regulated pathway. J Clin Invest. 1993 Aug;92(2):1042–1054. doi: 10.1172/JCI116609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sheng M., Greenberg M. E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990 Apr;4(4):477–485. doi: 10.1016/0896-6273(90)90106-p. [DOI] [PubMed] [Google Scholar]
  40. Sheng M., Thompson M. A., Greenberg M. E. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science. 1991 Jun 7;252(5011):1427–1430. doi: 10.1126/science.1646483. [DOI] [PubMed] [Google Scholar]
  41. Simon J. P., Bader M. F., Aunis D. Effect of secretagogues on chromogranin A synthesis in bovine cultured chromaffin cells. Possible regulation by protein kinase C. Biochem J. 1989 Jun 15;260(3):915–922. doi: 10.1042/bj2600915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stachowiak M. K., Hong J. S., Viveros O. H. Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells. Brain Res. 1990 Mar 5;510(2):277–288. doi: 10.1016/0006-8993(90)91378-t. [DOI] [PubMed] [Google Scholar]
  43. Suh H. W., Hudson P. M., McMillian M. K., Das K. P., Wilson B. C., Wu G. C., Hong J. S. Long-term stimulation of nicotinic receptors is required to increase proenkephalin A mRNA levels and the delayed secretion of [Met5]-enkephalin in bovine adrenal medullary chromaffin cells. J Pharmacol Exp Ther. 1995 Dec;275(3):1663–1670. [PubMed] [Google Scholar]
  44. Takiyyuddin M. A., Cervenka J. H., Hsiao R. J., Barbosa J. A., Parmer R. J., O'Connor D. T. Chromogranin A. Storage and release in hypertension. Hypertension. 1990 Mar;15(3):237–246. doi: 10.1161/01.hyp.15.3.237. [DOI] [PubMed] [Google Scholar]
  45. Tang K., Wu H., Mahata S. K., Taupenot L., Rozansky D. J., Parmer R. J., O'Connor D. T. Stimulus-transcription coupling in pheochromocytoma cells. Promoter region-specific activation of chromogranin a biosynthesis. J Biol Chem. 1996 Nov 8;271(45):28382–28390. doi: 10.1074/jbc.271.45.28382. [DOI] [PubMed] [Google Scholar]
  46. Thompson M. A., Ginty D. D., Bonni A., Greenberg M. E. L-type voltage-sensitive Ca2+ channel activation regulates c-fos transcription at multiple levels. J Biol Chem. 1995 Mar 3;270(9):4224–4235. doi: 10.1074/jbc.270.9.4224. [DOI] [PubMed] [Google Scholar]
  47. Trejo J., Massamiri T., Deng T., Dewji N. N., Bayney R. M., Brown J. H. A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of the Alzheimer's beta-amyloid precursor protein gene. J Biol Chem. 1994 Aug 26;269(34):21682–21690. [PubMed] [Google Scholar]
  48. Van Buskirk R., Corcoran T., Wagner J. A. Clonal variants of PC12 pheochromocytoma cells with defects in cAMP-dependent protein kinases induce ornithine decarboxylase in response to nerve growth factor but not to adenosine agonists. Mol Cell Biol. 1985 Aug;5(8):1984–1992. doi: 10.1128/mcb.5.8.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Walton K. M., Rehfuss R. P., Chrivia J. C., Lochner J. E., Goodman R. H. A dominant repressor of cyclic adenosine 3',5'-monophosphate (cAMP)-regulated enhancer-binding protein activity inhibits the cAMP-mediated induction of the somatostatin promoter in vivo. Mol Endocrinol. 1992 Apr;6(4):647–655. doi: 10.1210/mend.6.4.1350057. [DOI] [PubMed] [Google Scholar]
  50. Wan D. C., Marley P. D., Livett B. G. Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to cAMP elevation and phorbol esters. Brain Res Mol Brain Res. 1991 Jan;9(1-2):135–142. doi: 10.1016/0169-328x(91)90138-n. [DOI] [PubMed] [Google Scholar]
  51. Wan D. C., Marley P. D., Livett B. G. Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to secretory stimuli. Brain Res Mol Brain Res. 1991 Jan;9(1-2):103–111. doi: 10.1016/0169-328x(91)90135-k. [DOI] [PubMed] [Google Scholar]
  52. Wan D. C., Marley P. D., Livett B. G. Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to secretory stimuli. Brain Res Mol Brain Res. 1991 Jan;9(1-2):103–111. doi: 10.1016/0169-328x(91)90135-k. [DOI] [PubMed] [Google Scholar]
  53. Woloshin P. I., Walton K. M., Rehfuss R. P., Goodman R. H., Cone R. D. 3',5'-cyclic adenosine monophosphate-regulated enhancer binding (CREB) activity is required for normal growth and differentiated phenotype in the FRTL5 thyroid follicular cell line. Mol Endocrinol. 1992 Oct;6(10):1725–1733. doi: 10.1210/mend.6.10.1333055. [DOI] [PubMed] [Google Scholar]
  54. Wu H. J., Rozansky D. J., Parmer R. J., Gill B. M., O'Connor D. T. Structure and function of the chromogranin A gene. Clues to evolution and tissue-specific expression. J Biol Chem. 1991 Jul 15;266(20):13130–13134. [PubMed] [Google Scholar]
  55. Wu H., Mahata S. K., Mahata M., Webster N. J., Parmer R. J., O'Connor D. T. A functional cyclic AMP response element plays a crucial role in neuroendocrine cell type-specific expression of the secretory granule protein chromogranin A. J Clin Invest. 1995 Jul;96(1):568–578. doi: 10.1172/JCI118069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wu H., Rozansky D. J., Webster N. J., O'Connor D. T. Cell type-specific gene expression in the neuroendocrine system. A neuroendocrine-specific regulatory element in the promoter of chromogranin A, a ubiquitous secretory granule core protein. J Clin Invest. 1994 Jul;94(1):118–129. doi: 10.1172/JCI117297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Xie H., Rothstein T. L. Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated through surface Ig. J Immunol. 1995 Feb 15;154(4):1717–1723. [PubMed] [Google Scholar]
  58. Xie H., Wang Z., Rothstein T. L. Signaling pathways for antigen receptor-mediated induction of transcription factor CREB in B lymphocytes. Cell Immunol. 1996 May 1;169(2):264–270. doi: 10.1006/cimm.1996.0117. [DOI] [PubMed] [Google Scholar]
  59. von Rüden L., García A. G., López M. G. The mechanism of Ba(2+)-induced exocytosis from single chromaffin cells. FEBS Lett. 1993 Dec 20;336(1):48–52. doi: 10.1016/0014-5793(93)81606-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES