Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1193–1198. doi: 10.1172/JCI119631

Low concentrations of nitric oxide increase oxygen affinity of sickle erythrocytes in vitro and in vivo.

C A Head 1, C Brugnara 1, R Martinez-Ruiz 1, R M Kacmarek 1, K R Bridges 1, D Kuter 1, K D Bloch 1, W M Zapol 1
PMCID: PMC508295  PMID: 9276736

Abstract

The hallmark of sickle cell disease (SCD) is the polymerization of deoxygenated sickle hemoglobin (HbS). In SCD patients, one strategy to reduce red blood cell (RBC) sickling is to increase HbS oxygen affinity. Our objective was to determine if low concentrations of nitric oxide (NO) gas would augment the oxygen affinity of RBCs containing homozygous HbS (SS). Blood containing normal adult hemoglobin (AA) or SS RBCs was incubated in vitro in the presence of varying concentrations of NO up to 80 ppm, and oxygen dissociation curves (ODCs) were measured. In addition, blood was obtained from three AA and nine SS volunteers, before and after breathing 80 ppm NO in air for 45 min, and the ODCs were measured. Exposure of SS RBCs to 80 ppm NO in vitro for 5 min or longer decreased the partial pressure of oxygen at which hemoglobin is 50% saturated with oxygen (P50), an average of 15% (4.8+/-1.7 mmHg mean+/-SE; P < 0.001). The increase in SS RBC oxygen affinity correlated with the NO concentration. The P50 of AA RBCs was unchanged (P > 0.1) by 80 ppm NO. In SS volunteers breathing 80 ppm NO for 45 min, the P50 decreased (P < 0.001) by 4.6+/-2.0 mmHg. 60 min after NO breathing was discontinued, the RBC P50 remained decreased in five of seven volunteers in whom the ODC was measured. There was no RBC P50 change (P > 0.1) in AA volunteers breathing NO. Methemoglobin (Mhb) remained low in all subjects breathing NO (SS Mhb 1.4+/-0.5%), and there was no correlation (r = 0.02) between the reduction in P50 and the change in Mhb. Thus, low concentrations of NO augment the oxygen affinity of sickle erythrocytes in vitro and in vivo without significant Mhb production. These results suggest that low concentrations of NO gas may offer an attractive new therapeutic model for the treatment of SCD.

Full Text

The Full Text of this article is available as a PDF (195.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEUTLER E. The effect of methemoglobin formation in sickle cell disease. J Clin Invest. 1961 Oct;40:1856–1871. doi: 10.1172/JCI104410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benesch R. E., Edalji R., Kwong S., Benesch R. Oxygen affinity as an index of hemoglobin S polymerization: a new micromethod. Anal Biochem. 1978 Aug 15;89(1):162–173. doi: 10.1016/0003-2697(78)90737-6. [DOI] [PubMed] [Google Scholar]
  3. Beutler E. The effect of carbon monoxide on red cell life span in sickle cell disease. Blood. 1975 Aug;46(2):253–259. [PubMed] [Google Scholar]
  4. Briehl R. W., Ewert S. M. Gelation of sickle cell haemoglobin. II. Methaemoglobin. J Mol Biol. 1974 Nov 15;89(4):759–766. doi: 10.1016/0022-2836(74)90050-3. [DOI] [PubMed] [Google Scholar]
  5. Briehl R. W., Salhany J. M. Gelation of sickle hemoglobin. III. Nitrosyl hemoglobin. J Mol Biol. 1975 Aug 25;96(4):733–743. doi: 10.1016/0022-2836(75)90149-7. [DOI] [PubMed] [Google Scholar]
  6. Brugnara C., Gee B., Armsby C. C., Kurth S., Sakamoto M., Rifai N., Alper S. L., Platt O. S. Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J Clin Invest. 1996 Mar 1;97(5):1227–1234. doi: 10.1172/JCI118537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charache S., Terrin M. L., Moore R. D., Dover G. J., Barton F. B., Eckert S. V., McMahon R. P., Bonds D. R. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995 May 18;332(20):1317–1322. doi: 10.1056/NEJM199505183322001. [DOI] [PubMed] [Google Scholar]
  8. Craescu C. T., Poyart C., Schaeffer C., Garel M. C., Kister J., Beuzard Y. Covalent binding of glutathione to hemoglobin. II. Functional consequences and structural changes reflected in NMR spectra. J Biol Chem. 1986 Nov 5;261(31):14710–14716. [PubMed] [Google Scholar]
  9. De Furia F. G., Miller D. R., Cerami A., Manning J. M. The effects of cyanate in vitro on red blood cell metabolism and function in sickle cell anemia. J Clin Invest. 1972 Mar;51(3):566–574. doi: 10.1172/JCI106845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eaton W. A., Hofrichter J. Hemoglobin S gelation and sickle cell disease. Blood. 1987 Nov;70(5):1245–1266. [PubMed] [Google Scholar]
  11. Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
  12. Frostell C., Fratacci M. D., Wain J. C., Jones R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991 Jun;83(6):2038–2047. doi: 10.1161/01.cir.83.6.2038. [DOI] [PubMed] [Google Scholar]
  13. Garel M. C., Domenget C., Caburi-Martin J., Prehu C., Galacteros F., Beuzard Y. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J Biol Chem. 1986 Nov 5;261(31):14704–14709. [PubMed] [Google Scholar]
  14. Guarnone R., Centenara E., Barosi G. Performance characteristics of Hemox-Analyzer for assessment of the hemoglobin dissociation curve. Haematologica. 1995 Sep-Oct;80(5):426–430. [PubMed] [Google Scholar]
  15. Harano K., Harano T., Shibata S., Ueda S., Mori H., Seki M. Hb Okazaki [beta 93(F8) Cys----Arg], a new hemoglobin variant with increased oxygen affinity and instability. FEBS Lett. 1984 Jul 23;173(1):45–47. doi: 10.1016/0014-5793(84)81014-5. [DOI] [PubMed] [Google Scholar]
  16. Jia L., Bonaventura C., Bonaventura J., Stamler J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996 Mar 21;380(6571):221–226. doi: 10.1038/380221a0. [DOI] [PubMed] [Google Scholar]
  17. Kon K., Maeda N., Shiga T. Effect of nitric oxide on the oxygen transport of human erythrocytes. J Toxicol Environ Health. 1977 May;2(5):1109–1113. doi: 10.1080/15287397709529508. [DOI] [PubMed] [Google Scholar]
  18. Moore E. G., Gibson Q. H. Cooperativity in the dissociation of nitric oxide from hemoglobin. J Biol Chem. 1976 May 10;251(9):2788–2794. [PubMed] [Google Scholar]
  19. Moriguchi M., Manning L. R., Manning J. M. Nitric oxide can modify amino acid residues in proteins. Biochem Biophys Res Commun. 1992 Mar 16;183(2):598–604. doi: 10.1016/0006-291x(92)90524-o. [DOI] [PubMed] [Google Scholar]
  20. Noguchi C. T., Rodgers G. P., Schechter A. N. Intracellular polymerization. Disease severity and therapeutic predictions. Ann N Y Acad Sci. 1989;565:75–82. doi: 10.1111/j.1749-6632.1989.tb24152.x. [DOI] [PubMed] [Google Scholar]
  21. Pepke-Zaba J., Higenbottam T. W., Dinh-Xuan A. T., Stone D., Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991 Nov 9;338(8776):1173–1174. doi: 10.1016/0140-6736(91)92033-x. [DOI] [PubMed] [Google Scholar]
  22. Poillon W. N., Kim B. C., Labotka R. J., Hicks C. U., Kark J. A. Antisickling effects of 2,3-diphosphoglycerate depletion. Blood. 1995 Jun 1;85(11):3289–3296. [PubMed] [Google Scholar]
  23. Poillon W. N., Robinson M. D., Kim B. C. Deoxygenated sickle hemoglobin. Modulation of its solubility by 2,3-diphosphoglycerate and other allosteric polyanions. J Biol Chem. 1985 Nov 15;260(26):13897–13900. [PubMed] [Google Scholar]
  24. Roberts J. D., Jr, Fineman J. R., Morin F. C., 3rd, Shaul P. W., Rimar S., Schreiber M. D., Polin R. A., Zwass M. S., Zayek M. M., Gross I. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med. 1997 Feb 27;336(9):605–610. doi: 10.1056/NEJM199702273360902. [DOI] [PubMed] [Google Scholar]
  25. Rossaint R., Falke K. J., López F., Slama K., Pison U., Zapol W. M. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med. 1993 Feb 11;328(6):399–405. doi: 10.1056/NEJM199302113280605. [DOI] [PubMed] [Google Scholar]
  26. Sharma V. S., Traylor T. G., Gardiner R., Mizukami H. Reaction of nitric oxide with heme proteins and model compounds of hemoglobin. Biochemistry. 1987 Jun 30;26(13):3837–3843. doi: 10.1021/bi00387a015. [DOI] [PubMed] [Google Scholar]
  27. Sunshine H. R., Hofrichter J., Eaton W. A. Requirement for therapeutic inhibition of sickle haemoglobin gelation. Nature. 1978 Sep 21;275(5677):238–240. doi: 10.1038/275238a0. [DOI] [PubMed] [Google Scholar]
  28. Trudel M., De Paepe M. E., Chrétien N., Saadane N., Jacmain J., Sorette M., Hoang T., Beuzard Y. Sickle cell disease of transgenic SAD mice. Blood. 1994 Nov 1;84(9):3189–3197. [PubMed] [Google Scholar]
  29. Zapol W. M., Rimar S., Gillis N., Marletta M., Bosken C. H. Nitric oxide and the lung. Am J Respir Crit Care Med. 1994 May;149(5):1375–1380. doi: 10.1164/ajrccm.149.5.8173780. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES